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Objective:Deficientexcitatorydrivetoparvalbumin-containing
cortical interneurons is proposed as a key neural substrate for
altered gamma oscillations and cognitive dysfunction in schizo-
phrenia.However, a pathological entity producing suchadeficit
has not been identified. The authors tested the hypothesis
that cortical parvalbumin interneurons receive fewer excit-
atory synaptic inputs in individuals with schizophrenia.

Method: Fluorescent immunohistochemistry, confocal mi-
croscopy, and post-image processing techniques were used
to quantify the number of putative excitatory synapses (i.e.,
the overlap of vesicular glutamate transporter 1-positive
[VGlut1+] puncta and postsynaptic density protein 95-positive
[PSD95+] puncta) per surface area of parvalbumin-positive
(PV+) or calretinin-positive (CR+) neurons in the dorsolateral
prefrontal cortex from schizophrenia subjects and matched
unaffected comparison subjects.

Results: Mean density of VGlut1+/PSD95+ puncta on PV+
neurons was 18% lower in schizophrenia, a significant

difference. This deficitwas not influencedbymethodological
confounds or schizophrenia-associated comorbid factors,
not present inmonkeys chronically exposed to antipsychotic
medications, and not present in CR+ neurons. Mean density
of VGlut1+/PSD95+ puncta on PV+ neurons predicted the
activity-dependent expression levels of parvalbumin and
glutamic acid decarboxylase 67 (GAD67) in schizophrenia
subjects but not comparison subjects.

Conclusions: To the authors’ knowledge, this is the first
demonstration that excitatory synapse density is lower se-
lectively on parvalbumin interneurons in schizophrenia and
predicts the activity-dependent down-regulation of parval-
bumin and GAD67. Because the activity of parvalbumin in-
terneurons is required for generation of cortical gamma
oscillations and working memory function, these findings
reveal a novel pathological substrate for cortical dysfunction
and cognitive deficits in schizophrenia.
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Cognitive dysfunction is a core and clinically critical feature
of schizophrenia (1) but responds poorly to available medica-
tions (2). Therefore, identifying the neural substrate for these
cognitive deficits is critical for the development of new
therapeutic interventions. Certain cognitive deficits, such as
impaired working memory, appear to emerge from altered
gamma oscillations in the dorsolateral prefrontal cortex
(DLPFC) (3). Because cortical gammaoscillations require the
activity of parvalbumin-containing (PV) interneurons (4, 5),
deficient cortical PV interneuron activity could provide the
neural substrate for altered prefrontal gamma oscillations and
consequently impaired working memory in schizophrenia.

Lower glutamatergic drive to PV interneurons has been
hypothesized to be the cause of deficient PV interneuron
activity in schizophrenia (6–8). This hypothesis is based on
findings that experimental manipulations in model systems
that reduce glutamatergic drive to PV interneurons result in
lower PV interneuron activity accompanied by lower ex-
pressionof activity-dependentgeneproducts (e.g.,PVandthe
GABA-synthesizing enzyme glutamic acid decarboxylase

67 [GAD67]), abnormal gamma oscillations, and working
memory deficits (9–12). Consistent with this hypothesis,
postmortem studies have repeatedly shown lower PV and
GAD67 levels in theDLPFCof schizophrenia subjects (13–17),
which are thought to reflect lower glutamatergic drive to a
subset of PV neurons and not a loss of PV neurons in the
illness (13, 15, 18, 19). These deficits do not seem to be due to a
global reduction in excitatory drive to all interneuron sub-
types, as calretinin-containing (CR) interneurons, the most
abundant interneuron subtype in the primate DLPFC (20),
appear tobe relativelyunaffected in schizophrenia (15, 16, 21).
However, thepathological basis for lowerglutamatergicdrive
selectively onto PV interneurons, such as fewer excitatory
synapses on these neurons, has not been identified in people
with schizophrenia.

Therefore, in this study, we used multilabeling fluorescent
immunohistochemistry, confocal imaging, and a custom post-
imageprocessingmethodtodirectlyassessexcitatorysynapses
on parvalbumin-positive (PV+) neurons in the DLPFC from
matched pairs of schizophrenia and unaffected comparison
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subjects. We tested the hypotheses that 1) lower PV levels
in subjects with schizophrenia reflect altered PV expression
per neuron and not a loss of PV+ neurons, 2) PV+, but not
calretinin-positive (CR+), neurons receive fewer excitatory
synaptic inputs in subjects with schizophrenia, and 3) fewer
excitatory synapses on PV+ neurons are associated with
activity-dependent down-regulation of PV and GAD67 levels.

METHOD

Human Subjects
Brain specimens (N=40) were obtained during routine au-
topsies conducted at the Allegheny County Office of the
Medical Examiner (Pittsburgh) after consent was obtained
from the next of kin. An independent team of cliniciansmade
consensus DSM-IV diagnoses for each subject based on
structured interviews with family members and review of
medical records. The absence of a psychiatric diagnosis was
confirmed in unaffected comparison subjects using the same
approach. All procedureswere approved by theUniversity of
Pittsburgh Committee for the Oversight of Research and
Clinical Training Involving the Dead and the Institutional
Review Board for Biomedical Research. The subjects were
selected based on a postmortem interval less than 24 hours in
order to avoid the effect of postmortem interval on protein
immunoreactivity (see the “Supplementary Methods” sec-
tion in the data supplement accompanying the online version
of the article). In addition, to control for the autofluorescence
emitted by lipofuscin, which accumulates with aging (22),
all subjects were less than 62 years of age. To control for
experimental variance and to reduce biological variance,
each subject with schizophrenia or schizoaffective disorder
(N=20) was paired with one unaffected comparison subject
for sex and as closely as possible for age (see Table S1 in the
onlinedata supplement).Themeanage,postmortem interval,

and tissue storage time did not differ between subject groups
(Table 1).

Fluorescent Immunohistochemistry
Paraformaldehyde-fixed coronal tissue sections (40 mm)
containing DLPFC area 9 were processed for fluorescent
immunohistochemistry as previously described (23). Sec-
tions were pretreated for antigen retrieval (0.01 M sodium
citrate for 75 minutes at 80°C) and then incubated for
72 hours in the following primary antibodies: PV (mouse, 1:
1000; Swant, Bellinzona, Switzerland), CR (goat, 1:1000;
Swant), postsynaptic densityprotein95 (PSD95; rabbit, 1:250;
Cell Signaling, Danvers, Mass.), and vesicular glutamate
transporter 1 (VGlut1; guinea pig, 1:250; Millipore, Billerica,
Mass.). Tissue sections were then incubated for 24 hours
with secondary antibodies (donkey) conjugated to Alexa
488 (antimouse, 1:500), 568 (antirabbit, 1:500), 647 (anti-
guinea pig, 1:500) (all from Invitrogen, Carlsbad, Calif.)
or biotin (antigoat, 1:200; Fitzgerald, Acton, Mass.). Sec-
tions were then incubated with streptavidin 405 (1:200;
Invitrogen) for 24 hours. After washing, the sections were
mounted in the Prolong Gold Antifade reagent (Life Tech-
nologies, Carlsbad, Calif.), coded to obscure diagnosis and
subject number, and stored at 4°C until imaging. All anti-
bodies used in this study have been previously shown to
specifically recognize the targeted protein (see “Supple-
mentary Methods” in the online data supplement).

Image Acquisition
Images were acquired on an Olympus (Center Valley, Pa.)
IX81 invertedmicroscopeequippedwith anOlympus spinning
disk confocal unit, a Hamamatsu EM-CCD digital camera
(Bridgewater, N.J.), and a high-precision BioPrecision2 XYZ
motorized stage with linear XYZ encoders (Ludl Electronic
Products, Hawthorne, N.J.) using a 6031.40 NA SC oil im-
mersion objective. Ten image stacks (5123512 pixels; 0.25mm
z-step) in layer 2 or 4 from each section were selected using
a previously published method for systematic random sam-
pling (24). Layer 2or4wasdefinedas 10%220%or50%260%
of the pia-to-white matter distance, respectively (25). We
sampled these two layers as layer 4 contains a high density
of PV interneurons (20) and prominently lower PV mRNA
levels in schizophrenia (15, 21), whereas layer 2 contains a
high density of CR interneurons (26). The very low densities
of PV interneurons in layer 2 and of CR interneurons in layer
4 precluded the sampling of these neurons. Lipofuscin for
each stack was imaged using a custom fifth channel (exci-
tation wavelength: 405 nm; emission wavelength: 647 nm) at
a constant exposure time as previously described (27).

Post-Image Processing and Object Sampling
Each fluorescent channel was deconvolved using the algo-
rithm for blind deconvolution in Autoquant (Media Cyber-
netics, Rockville, Md.) to improve resolving power. VGlut1+
and PSD95+ puncta were used to identify the pre- and
postsynaptic elements, respectively, as these molecular

TABLE 1. Summary Characteristics of Study Subjects

Characteristic

Unaffected
Comparison
Subjects

Schizophrenia
Subjects

N % N %

Sex
Male 15 75 15 75
Female 5 25 5 25

Race
White 16 80 14 70
Black 4 20 6 30

Mean SD Mean SD

Age (years)a 46.3 12.1 45.2 11.8
Postmortem interval (hours)b 16.4 5.5 15.4 6.3
Tissue storage time (months)c 110.8 33.9 103.5 28.3

a Nonsignificantdifferencebetweengroups (paired t test: t=1.3, df=19, p=0.21).
b Nonsignificant difference between groups (paired t test: t=0.7, df=19,
p=0.47).

c Nonsignificant difference between groups (paired t test: t=0.9, df=19,
p=0.36).
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markers have been previously used to define excitatory
synapses in PV interneurons (11, 28, 29). Masking of VGlut1+
and PSD95+ puncta was performed using the previously
described method (30) (see “Supplementary Methods” and
FigureS1 in theonlinedata supplement).EdgesofPV+orCR+
cell bodies were segmented by the MATLAB edge function
using the Canny edge detector operator (31). The edges
of segmented objects were closed, filled, and size-gated
(.80 mm3) to limit the boundaries of PV+ or CR+ cell bod-
ies. All PV+ and CR+ cell body masks were manually cleaned
for final analyses (see Figure S1 in data supplement). We
sampled objects that localized within the middle 80% of
z-planes (∼32 mm), based on antibody penetration efficiency
analyses to avoid edge effects (see “SupplementaryMethods”
in online data supplement). The mean volume of tissue
sampled did not differ between subject groups (layer 2: t=0.3,
df=19, p=0.78; layer 4: t=0.03, df=19, p=1.00). The mean
numbers of VGlut1+ puncta and PSD95+ puncta sampled in
layer 2 or layer 4 did not differ between subject groups (in all
cases, t,|1.6|, df=19, p.0.12), indicating the absence of any
group differences in cortical lamination. Numbers of VGlut1+/
PSD95+ puncta per surface area of PV+ or CR+ cell bodies
were calculated in order to determine the density of excit-
atory synapses on PV+ or CR+ neurons.

Antipsychotic-Exposed Monkeys
Male monkeys (Macaca fasicularis) received oral doses of
haloperidol (12–14 mg), olanzapine (5.5–6.6 mg), or placebo
(N=6 per each group) twice daily for 17–27 months as pre-
viously described (32). Trough plasma levels for haloperidol
and olanzapine were within the range associated with clinical
efficacy in humans (32). The monkeys were euthanized in
triads (one monkey from each of the three groups) on the
same day. Coronal sections (40 mm) containing DLPFC area
9 from each monkey were processed for fluorescent immu-
nohistochemistry as described above.

Statistics
Two analysis of covariance (ANCOVA) models were used to
assess the main effect of diagnosis on the dependent mea-
sures. The paired ANCOVAmodel included subject pair as a
blocking factor and postmortem interval and tissue storage
time as covariates. This paired model accounts both for our
attempts to balance diagnostic groups for sex and age and for
theparallel tissueprocessing of both subjects in apair, but it is
not a true statistical paired design. Therefore,we also used an
unpairedANCOVAmodel that includedsex, age,postmortem
interval, and storage time as covariates. Most covariateswere
not significant and therefore were not included in the final
analyses; exceptions included an effect of tissue storage time
on the mean density of PSD95+ puncta on PV+ cell bodies
(F=5.5, df=1, 35, p=0.03) by unpaired ANCOVA and an effect
of storage time on the mean surface area of CR+ cell bodies
(F=6.5, df=1, 18, p=0.03) and on themean density of VGlut1+/
PSD95+ puncta on CR+ cell bodies (F=8.8, df=1, 18, p=0.008)
by paired ANCOVA.

Thepotential influenceof comorbid factors (e.g., diagnosis
of schizoaffective disorder; history of substance dependence
or abuse; nicotine, antidepressant, benzodiazepine, and/or
sodiumvalproate use at time of death; death by suicide) in the
schizophrenia subjects was assessed by an ANCOVA model
with each factor as the main effect and sex, age, postmortem
interval, and storage time as covariates. Pearson’s correlation
analysis was performed to assess the relationship of the
density of VGlut1+/PSD95+ puncta on PV+ cell bodies to
somalPVimmunoreactivity levelsor toPVandGAD67mRNA
levelsobtained frompreviouslypublishedstudies (33,34).For
the antipsychotic-exposed monkeys, an ANCOVA was used
to assess the main effect of antipsychotic treatment on the
dependent measures with triad as a blocking factor.

RESULTS

Lower PV Levels in PV Interneurons in Schizophrenia
We sampled PV+ neurons in DLPFC layer 4 (Figures 1A and
1B), as lowerPVmRNAlevels in schizophrenia areprominent
in this layer (15, 21). Consistent with those findings, mean PV
protein levels in PV+ cell bodies were 34% lower in subjects
with schizophrenia, a significant difference (Figure 1C). The
meannumbersofPV+neurons in identical volumesof sampled
tissue did not differ between subject groups (Figure 1D). Fi-
nally, we observed a left shift in the frequency distribution of
PV levels per PV+ cell body in schizophrenia subjects relative
to comparison subjects (Figure 1E). Together, these findings
suggest that lower PV levels in schizophrenia reflect lower
PVexpression in a subset of PVneurons andnot a deficit in PV
neuron number.

Fewer Excitatory Synaptic Inputs to PV Interneurons in
Schizophrenia
The pre- and postsynaptic elements of excitatory synapses
on PV+ neurons were identified by VGlut1+ puncta and
PSD95+ puncta, respectively (Figures 2A and 2B). Excitatory
synapseswere defined by the overlap of VGlut1+ and PSD95+
(VGlut1+/PSD95+)puncta.ThemeandensityofVGlut1+/PSD95+
puncta on PV+ cell bodies was 18% lower in schizophrenia
subjects, a significant difference (Figure 2C). The mean
densities of VGlut1+ and PSD95+ puncta on PV+ cell bodies
were also significantly lower—12% and 19%, respectively—in
the schizophrenia subjects (Figures 2D and 2E), reflecting
fewer pre- and postsynaptic glutamatergic structures on
PV+ neurons.

Lack of Effect From Methodological Confounds or
Disease-Associated Comorbid Factors
Themean surface area of PV+ cell bodies did not differ between
subject groups (Figure 2F), indicating that the lower density of
excitatory synapses on PV+ neurons in schizophrenia is not due
to a larger surface area of PV+ cell bodies. ThemeanVGlut1 and
PSD95protein levels in labeledpunctaonPV+cellbodiesdidnot
differ between subject groups (see Figure S2 in the online data
supplement), suggesting that our findings of fewer synaptic
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structures in schizophrenia were not biased by lower levels of
synaptic markers. Finally, themean density of VGlut1+/PSD95+
puncta on PV+ cell bodies did not differ among schizophrenia
subjectsasa functionofassessedcomorbid factors (seeFigureS3
in the data supplement) and was not altered in monkeys
chronically exposed to antipsychoticmedications (see Figure
S4D in data supplement). Together, these findings suggest that
fewer excitatory synapses on PV+ neurons reflect the disease
process of schizophrenia and are not due to methodological
confoundsorotherfactorscommonlyassociatedwiththeillness.

Unaffected Excitatory Synaptic Inputs to CR
Interneurons in Schizophrenia
In order to determine the cell type specificity of the lower
number of excitatory synapses onPV+neurons,wemeasured
the density of excitatory synapses onCR+neurons. Themean
numbers of sampled CR+ neurons, mean somal CR protein

levels, andmean surface area of CR+ cell bodies did not differ
between subject groups (Figures 3A–C). Themean density of
VGlut1+/PSD95+ puncta on CR+ cell bodies was 9% higher
in the schizophrenia subjects (Figure 3D), demonstrating
that the number of excitatory synapses on CR+ neurons is
not lower in the illness.

Validation of Methods for Quantifying Excitatory
Synaptic Inputs
We have previously shown by dual-labeling electron mi-
croscopy that the density of excitatory synapses is signifi-
cantly higher (1.90-fold) on PV+ than CR+ neurons in the
primate DLPFC (35). Consistent with these findings, the
mean density of VGlut1+/PSD95+ puncta on PV+ cell bodies
was significantly (1.73-fold) higher than onCR+ cell bodies in
the comparison subjects in the present study (t=8.5, df=19,
p,0.001). This finding indicates that the light microscopic

FIGURE 1. Sampling of PV+ Neurons and Quantification of PV Immunoreactivity Levels in Dorsolateral Prefrontal Cortex Area 9 for Each
Matched Pair of Unaffected Comparison and Schizophrenia Subjectsa
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methods used here provide a robust means for sampling
excitatory synaptic inputs specific to PV+ or CR+ neurons.

Prediction of PV and GAD67 Expression in Human
DLPFC by Excitatory Synapses on PV Interneurons
Finally, we assessed whether the density of excitatory syn-
apses on PV+ neurons predicted levels of PV and GAD67,
molecular markers of PV interneuron activity. Mean density
of VGlut1+/PSD95+ puncta on PV+ cell bodies was positively

correlated with PV and GAD67 mRNA levels in schizo-
phrenia subjects but not in comparison subjects (Figures 4A
and 4B). In addition, the mean density of VGlut1+/PSD95+
puncta on PV+ cell bodies positively predicted the mean
somal PV immunoreactivity levels in schizophrenia subjects
but not in comparison subjects (Figure 4C). Moreover, this
positive correlation was evident across all sampled PV+
neurons in both subject groups (Figure 4D). Among these
neurons, the PV+ neurons with the lowest PV levels (more

FIGURE 2. Lower Density of Excitatory Synapses on PV+ Neurons in Schizophrenia Subjects Relative toMatched Unaffected Comparison
Subjects
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SD=96) but did not differ significantly between groups (paired: F=3.3, df=1, 19, p=0.09; unpaired: F=3.5, df=1, 36, p=0.07).
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than one standard deviation below themean) had a density of
VGlut1+/PSD95+ puncta 42% lower than the PV+ neurons
with the highest PV levels (more than one standard deviation
above the mean), and the difference was statistically signif-
icant (t=–5.4, df=112, p,0.001).

DISCUSSION

Apathological substrate for reducedglutamatergic driveonto
PV interneurons in schizophrenia has not been previously

identified due to the technical
challenges of resolving syn-
aptic abnormalities in a cell
type–specific manner in post-
mortem human brain. Here
we report for the first time, to
our knowledge, that the neu-
ropathology of schizophrenia
includes a lower number of
excitatory synapses on PV in-
terneurons. This deficit ap-
pears to reflect the disease
process of schizophrenia and
is not due to methodological
confounds or other factors
commonly associatedwith the
illness. First, the presence of
fewer excitatory synapses on
PV+ neurons was evident
from lower numbers of both
pre- and postsynaptic mark-
ers, validating deficits in the
synaptic structures. Second,
these deficits were not con-
founded by either a larger sur-
face area of PV+ cell bodies or
undetectable levels of protein
markers within existing syn-
aptic structures in schizo-
phrenia subjects. Third, none
of the assessed schizophrenia-
associated comorbid factors
accounted for these deficits.
Fourth, long-term exposure
to antipsychoticmedications
did not alter the density of
excitatory synapses on PV+
neurons in the DLPFC of
nonhuman primates; the ef-
fect of antipsychotics could
not be assessed in humans, as
only one schizophrenia sub-
ject had not been exposed to
these medications. Fifth, the
density of excitatory synapses
onCR+neuronswasnot lower

in the illness, consistent with a prominent pathology of PV
interneurons in schizophrenia. Finally, the density of excit-
atory synapses on PV+ neurons predicted levels of the activity-
dependent gene products PV and GAD67 selectively in the
schizophrenia subjects. Together, these findings support the
hypothesis that fewer excitatory synapses selectively on cor-
tical PV interneurons provide a pathological substrate for de-
ficient excitatory drive to these interneurons in schizophrenia.

PV interneurons comprise two main subtypes: PV basket
neurons target the proximal dendrites and cell bodies of

FIGURE 3. Quantification of Excitatory Synapses on CR+ Neurons in Dorsolateral Prefrontal Cortex
Area 9 for Each Matched Pair of Unaffected Comparison and Schizophrenia Subjects
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a Themeannumber of sampledCR+neuronswas 0.8% lower in the schizophrenia subjects (mean=24.3, SD=6.7)
than in the comparison subjects (mean=24.5, SD=5.9) but did not differ significantly between groups (paired:
F=0.01, df=1, 19, p=0.93; unpaired: F=0.01, df=1, 36, p=0.93).

b The mean CR immunoreactivity level in CR+ cell bodies was 10% lower in the schizophrenia subjects
(mean=6.83107, SD=2.03107) than in the comparison subjects (mean=7.53107, SD=1.53107) but did not differ
significantly between groups (paired: F=2.6, df=1, 19, p=0.13; unpaired: F=1.9, df=1, 36, p=0.19). a.u., arbitrary
units.

c The surface area of CR+ cell bodies was 3% lower in the schizophrenia subjects (mean=336, SD=28) than in the
comparison subjects (mean=347, SD=34) but did not differ significantly betweengroups (paired: F=1.1, df=1, 18,
p=0.32; unpaired: F=1.7, df=1, 36, p=0.20).

d The density of VGlut1+/PSD95+ puncta on CR+ cell bodies was 9% higher in the schizophrenia subjects
(mean=0.0257, SD=0.005) than in the comparison subjects (mean=0.0236, SD=0.005). The difference was
significant in the paired test (F=5.1, df=1, 18, p=0.04) but not the unpaired test (F=1.5, df=1, 36, p=0.24).
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pyramidal neurons, and PV chandelier neurons synapse onto
the axon initial segment of pyramidal neurons (36). Although
both populations of PV interneuron subtypes are active during
gammaoscillations, gamma rhythms aremore strongly coupled
to the activity of PV basket neurons (37, 38). Given the much
greater prevalence of PV basket neurons in themiddle layers of
the primate DLPFC (39, 40), most of the PV+ neurons sampled
in our study are likely to be PV basket neurons.

Our sampling of excitatory synapses on PV+ neurons is
limited in two respects. First, we did not sample VGlut2-
containing excitatory inputs that represent projections from
the thalamus (41).However, thalamic axons represent a small
minority (,10%) of excitatory terminals in the cortex (42),
and only a small percentage of thalamic inputs target PV
interneurons (43), suggesting that the excitation of PV in-
terneurons is mostly driven by cortical excitatory inputs.

FIGURE 4. Association Between Density of Excitatory Synapses on PV+ Neurons and Activity-Dependent Expression Levels of PV and
GAD67 Selectively in Schizophrenia Subjectsa
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e Across all sampled PV+ neurons (N=725), the density of VGlut1+/PSD95+ puncta on PV+ cell bodies positively predicted somal PV immunoreactivity
levels in both groups (all subjects: r=0.33, p,0.001; comparison subjects: r=0.26, p,0.001; schizophrenia subjects: r=0.34, p,0.001).
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Second, we did not sample synaptic inputs to dendrites of PV
interneurons due to the few dendrites with detectable PV
immunoreactivity that originate from PV+ cell bodies. Al-
though the density of excitatory synapses is higher on den-
drites than cell bodies of PV interneurons (44), depolarization
of the cell body of PV interneurons is much stronger for
somal than dendritic excitatory inputs (45, 46). However,
despite these limitations, the density of excitatory cortical
synapses on PV+ cell bodies in the present study predicted
activity-dependent PV expression across all PV+ neurons.
Therefore, our approach was sufficiently sensitive to detect
an apparently functionally meaningful deficit in excitatory
synaptic inputs to PV+ neurons in schizophrenia subjects.

Multiple signaling pathways regulate the formation of ex-
citatory synapses on PV interneurons. For example, the ErbB4
signaling pathway induces the formation of excitatory synap-
ses on PV interneurons (11, 47, 48), and the release of neuronal
pentraxin 2 (Narp) from pyramidal cells recruits excitatory
synapses selectively on PV interneurons in an activity-
dependent manner (28). Both an abnormal shift in ErbB4
splicing at the JM locus (49, 50) and lower Narp transcript levels
have been shown in the DLPFC of subjects with schizophrenia,
including those included in the present study (21, 51). Across
these subjects, the density of VGlut1+/PSD95+ puncta on PV+
cell bodies was significantly correlated with the ratio of ErbB4
JM-a to JM-b splice variants in cortical layer 4 (r=20.44,
p=0.005) and with Narp mRNA levels in total gray matter
(r=0.35, p=0.03). These findings suggest that alterations in the
ErbB4 and/or Narp signaling pathways could be upstream of
the deficit in excitatory synaptic inputs to, and consequently
the lower activity of, PV interneurons in schizophrenia.

Consistent with the idea that PV interneuron activity is
reduced in the illness, activity-dependent expression levels of
GAD67 are lower in the DLPFC of subjects with schizo-
phrenia, and specifically in PV interneurons (15, 17). Ex-
perimental reductionsofGAD67 inPV interneuronsdecrease
inhibitory synaptic transmission in pyramidal cells and alter
cortical network activity (52–54). Strong inhibition of py-
ramidal cells by PV interneurons is required for the gener-
ation of gamma oscillations in the DLPFC associated with
working memory. Thus, the lower density of excitatory
synapses on PV+ neurons and the corresponding deficit in
GAD67 expression found in the present study could provide a
pathological substrate for deficient inhibition of pyramidal
cells by PV interneurons, which in turn would result in
impaired gammaoscillations andworkingmemory deficits in
people with schizophrenia.

Discovering pathological entities that bridge etiopatho-
genicpathways to thecore features of the illness is essential for
understanding the disease process of schizophrenia. For ex-
ample, disruptions in the ErbB4 or Narp signaling pathway in
the DLFPC could be upstream of the deficits in excitatory
synaptic inputs to PV interneurons in schizophrenia. Given
thatPV interneuronactivity isessential forgammaoscillations,
these deficits couldunderlie the downstreampathophysiology
of impaired gamma oscillations and consequently working

memory dysfunction in schizophrenia. Therefore, fewer
excitatory synapses on PV interneurons might serve as a
common pathological locus upon which diverse streams of
etiopathogenic pathways converge in order to produce a
core pathophysiological feature of schizophrenia from
which cognitive dysfunction emerges.
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