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There is robust evidence from epidemio-
logical studies that the offspring of older
fathers have an increased risk of neuro-
developmental disorders, such as schizo-
phrenia and autism. The authors present
a novel mechanism that may contribute to
this association. Because themale germ cell
undergoes many more cell divisions across
the reproductive age range, copy errors
taking place in the paternal germline are
associated with de novo mutations in the
offspring of oldermen. Recently it has been
recognized that somatic mutations in male
germ cells that modify proliferation
through dysregulation of the RAS protein
pathway can lead towithin-testis expansion
of mutant clonal lines. First identified in
association with rare disorders related to
paternal age (e.g., Apert syndrome, achon-
droplasia), this process is known as “selfish

spermatogonial selection.”Thismechanism
favors propagation of germ cells carrying
pathogenic mutations, increasingly skews
themutational profile of spermasmenage,
and enriches de novo mutations in the
offspring of older fathers that preferentially
affect specific cellular signaling pathways.
This mechanism not only offers a parsimo-
nious explanation for the association be-
tween advanced paternal age and various
neurodevelopmental disorders but also
provides insights into the genetic architec-
ture (role of de novo mutations), neurobi-
ological correlates (altered cell cycle), and
some epidemiological features of these
disorders. The authors outline hypotheses
to test this model. Given the secular
changes for delayed parenthood in most
societies, this hypothesis has important
public health implications.

(Am J Psychiatry 2013; 170:599–608)

Occasionally, seemingly distant fields of research
intersect and can catalyze new discoveries. In this review
we outline how divergent clues from epidemiological and
genetic studies in autism and schizophrenia research can
be integrated with an innovative hypothesis originally
proposed to explain the relatively high apparentmutational
rate associated with congenital disorders such as Apert
syndrome, achondroplasia, and “RASopathies,” syndromes
associated with the RAS family of proteins, which are
involved in intracellular signal transmission. The “selfish
spermatogonial selection” hypothesis predicts that somatic
mutations that promote clonal expansion within the male
germline progenitors will skew the influence of paternally
derived de novomutations. The proposedmechanismmay
provide a parsimonious explanation for diverse findings
related to neurodevelopmental disorders such as schizo-
phrenia and autism. A set of testable predictions are pro-
posed to evaluate this hypothesis.

Key Differences Between Male and
Female Gamete Production

Germ cell development differs radically between human
males and females—there are many more germline cell

divisions in the life history of a sperm than in that of an
oocyte. In the female, germ cells undergo only 22 mitotic
cell divisions in utero, which are followed by a long period
of arrest until puberty. Oocyte maturation is completed
when meiosis resumes a few minutes before ovulation. In
the male, by contrast, after 30 mitotic divisions during
embryogenesis, spermatogenesis is reinitiated at puberty
and adult stem cells (spermatogonial cells) undergo
regular mitotic divisions once every 16 days to produce
sperm. In a simple turnover model, this means that in a
20-year-old man, the spermatogonial cells have under-
gone approximately 150 cell divisions. By age 50 years, this
number is 840. Each time these cells divide, the entire
genome is replicated and copy errors (i.e., mutations)
inevitably occur (1). These between-sex biological differ-
ences in gamete production are also associated with
different profiles of de novo mutations. While chromo-
some nondisjunctions are meiotic in origin and tend to be
associated with maternal effects (such as Down’s syn-
drome), pointmutations, small insertion-deletion (indels),
microsatellite repeats, and nonrecurrent copy number
variations (CNVs) originate as a result of mitotic copy
errors and are typically associated with a paternal origin
(2–5). As whole-genome sequencing of a single sperm has
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recently been achieved (6), such techniques applied to the
sperm of men of different ages should reveal the nature of
the de novo mutational load carried by individual male
germ cells. Recently, whole-genome sequencing based
on parents and their offspring has confirmed that ap-
proximately 80% of de novo mutations are paternal in
origin and that the total number of mutations strongly
correlates with paternal age; an increase of about two
point mutations per year, corresponding to a doubling of
paternally derived mutations every 16.5 years, was
reported (7).

Advanced Paternal Age and Mental
Disorders

It was noted over 30 years ago that schizophrenia oc-
curs more frequently in the offspring of older fathers (8).
However, this observation had been largely forgotten until
Malaspina and colleagues (9) suggested that this finding
may be related to copy error mutations in the male
germline. In a large Israeli birth cohort, they found that
paternal age was a significant predictor of schizophrenia
risk. A recently published meta-analysis of this research
(10) suggested that the relationship between paternal age
and risk of schizophrenia is J-shaped: although it con-
firmed the increased risk in the offspring of older fathers,
it also identified a smaller risk increase in the offspring
of very young fathers, suggesting that other factors, in
addition to a simple age-related increase in copy error muta-
tions, are likely to mediate this effect.

There is a growing body of epidemiological research
linking advanced paternal age with other neuropsychiat-
ric disorders and brain-related outcomes. These include
autism and related spectrum disorders (11–13), bipolar
disorder (14), epilepsy (15), sporadic Alzheimer’s disease
(16), obsessive-compulsive disorder (17), and impaired
childhood cognitive ability (18). Thus, while the evidence
base is incomplete, the data suggest that advanced pa-
ternal age is associated with a wide range of brain-related
adverse health outcomes (i.e., the exposure is nonspecific
with respect to health outcomes). Within a community-
based sample of healthy children, paternal age was found
to be significantly associated with cortical gray (but not
white) matter volume (19). Finally, evidence from mouse
models shows that the offspring of older sires have altered
behavioral outcomes (20, 21), altered brain structure (20),
and increased de novo CNVs (22).

More recently, studies have suggested that grand-
paternal age (specifically in the mother’s line) may also
contribute to the risk of neurodevelopmental disorders
(23, 24). This may be understood when one considers that
phenotypes associated with predisposing mutations tend
to bemore pronounced inmales than in females, therefore
effectively leading to the skipping of generations. This
grandpaternal age effect suggests that mutations can
accumulate across generations. Although mutations with

larger phenotypic impacts are less likely to be transmitted
to subsequent generations (for instance, individuals with
schizophrenia and autism have markedly reduced fertility
and fecundity), mutations associated with more subtle
phenotypes or variable penetrance may be transmitted to
offspring and thus contribute to the “mutational burden”
in subsequent generations (discussed in the following).
In light of the secular trend of delayed parenthood (25),
Crow suggested that paternal-age-related mutations
could contribute to a transgenerational “mutational time
bomb” (1).

Paternal Age Effect Mutations and
Selfish Selection in the Testis

Although the differences between male and female
gamete production provide a plausible explanation for
the link between advanced paternal age and disease risk, re-
cent evidence suggests that there could be more to this
association than the simple accumulation of random copy
errors during spermatogenesis. We have previously de-
fined paternal age effect mutations as a small group of
well-characterized genetic alterations that are associated
with rare Mendelian dominant disorders and have un-
usual characteristics (5, 26). The best-known examples
involve specific activating point mutations in the fibro-
blast growth factor receptor genes FGFR2 (associated with
Apert and other craniosynostosis syndromes) and FGFR3
(associated with achondroplasia and other short-limbed
bone dysplasias) and in several members of the RTK/RAS
and associated MAPK signaling pathways (involving RAS
proteins and mitogen-activated protein kinase), such as
PTPN11/SHP2 and HRAS (associated with neurocardio-
faciocutaneous syndromes, such as Noonan and Costello
syndromes, which are collectively termed “RASopathies”)
(5). In the majority of cases, these point mutations 1) are
acquired de novo, 2) exhibit a near-exclusive paternal
origin, 3) have a high apparent germline mutation rate (up
to 1,000-fold above background for Apert syndrome and
achondroplasia, according to birth prevalence), and 4) are
associated epidemiologically with a significant paternal
age effect (with unaffected fathers approximately 2 to 7
years older on average than the population mean). Be-
cause of these features, paternal age effect mutations pro-
vide an excellent model for studying the effect of advanced
paternal age at a molecular level.
Levels of specific pathogenic mutations associated with

paternal age effect disorders in the sperm of healthy men
of different ages (26–28) and in dissected whole testes
(29–31) have been directly quantified. The results gathered
from these technically challenging experiments showed
that paternal age effect mutations are detected in the
sperm (but not in the blood) of most men, that the
measured levels account for the birth prevalence of the
associated disorders, and that the levels positively corre-
late with the donor’s age, in line with the observed
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paternal age effect. To explain these findings, we pre-
viously suggested (5, 26, 27) that rather than simply
accumulating through repeated copy errors, the originat-
ing mutational hits occur infrequently (i.e., at rates similar
to background rates of genomic mutations). However,
these are progressively enriched because they provide
a selective advantage to the mutant spermatogonial cells
in which they arose, leading to their clonal expansion. This
clonal growth of mutant spermatogonial cells, which is
likely to take place in the testes of all men and may
occasionally be associated with testicular tumors (26),
leads to the relative enrichment of mutant sperm over
time. This process accounts for the exclusive paternal
origin of these mutations, the epidemiological paternal
age effect, and the high prevalence of the associated
disorders. To distinguish this mechanism from the neutral
copy error process involving the accumulation of random
mutational hits over time, this phenomenon has been
termed “selfish spermatogonial selection” (5). For the sake
of brevity, we refer to this mechanism as “selfish selection”
for the remainder of this review, but it is most important to
remember that this process is occurring in the spermato-
gonial progenitors, not in the mature sperm.
At a cellular level, selfish selection appears to operate

through a mechanism that shares many of its features
with oncogenesis. Indeed, all genes associated with the
paternal age effect are known oncogenes that are able to
promote tumorigenesis in different cellular contexts (5).
Strikingly, at a molecular level, there is a common de-
nominator to selfish selection. Paternal age effect genes
cluster within a single pathway, the receptor tyrosine
kinase/RAS (RTK/RAS) signaling cascade (Figure 1). Not
surprisingly, this pathway is a key determinant of sper-
matogonial cell self-renewal, and its role in controlling
the balance of proliferation/differentiation during mam-
malian spermatogenesis has been well documented in
murinemodels (5). This effect is mediated through control
of several different transduction pathways downstream of
RAS, shown in Figure 1. The best-characterized pathways
include the MAPK pathway (shown in red in Figure 1), for
which ERK1/2 is a downstream effector, and the PI3K/AKT
cascade (shown in green), for which mTOR is a down-
stream effector (see Figure 1 for definitions of abbrevia-
tions). The RAS and RAS-related RHEB (RAS homolog
enriched in brain) signaling pathways, which are com-
monly dysregulated in cancer, are widely connected with
many essential cellular processes and have a key role
in neuronal functioning, including synaptic plasticity
(33, 34).
Although this paradigm is based on a handful of paternal

age effect mutations of unusually large effect, it is likely
that other selfish pathways operate in the context of the
aging testis. For example, the signaling networks triggered
by oncogenic activation of RAS are highly complex and
involve crosstalk between multiple pathways (32). In
particular, we might expect other well-characterized

oncogenic pathways, such as PI3K/AKT and their effectors,
which are key regulators of spermatogonial cell pro-
liferation, to participate in this process. Thus, while this
article will focus on the canonical RAS-related path-
ways, we speculate that mutations in any gene that is
expressed in spermatogonial cells and whose function
involves regulation of homeostasis through control of
proliferation/differentiation balance or cell cycle are
potential targets of selfish selection (5). Similarly, selfish
mutations are unlikely to be limited to point mutations
with strong gain-of-function properties, such as those
described so far for paternal age effect mutations; we
predict that other genetic alterations, such as CNVs, small
indels, or regulatory mutations, will also be targets of
selfish selection.

Genetic Architecture of Neurocognitive
Disorders and Selfish Selection

While not all de novo mutations associated with
neuropsychiatric disorders are related to paternal age
(for instance, 22q11.2 deletions are not), we note with
interest that there is overlap between the molecular
pathways that have been identified during exome/CNV
screens for schizophrenia and autism and those impli-
cated in selfish selection in the testis. In their large study
of CNVs in autism, Pinto et al. described a noticeable
enrichment of rare pathogenic CNVs—both inherited
and de novo—disrupting genes involved in cellular pro-
liferation, projection and motility, and RAS signaling (35).
Studies analyzing proband-parent trios in autism identi-
fied de novo mutations in genes clustering within molecular
pathways implicated in tumorigenesis and control of early
development, such as RAS, p53, and b-catenin pathways
(35–39). There is also evidence suggesting that individuals
diagnosed with RASopathies have more difficulties in adap-
tive functioning (40) and show autistic traits (41). Thus,
within the fields of autism and schizophrenia research,
there has beenanunexpectedoverlap between 1) candidate
pathogenic variants in genes that are being discovered
through genetic studies and 2) genes involved in tumori-
genesis as well as selfish selection in the testis.
With respect to genetic risk factors, researchers have

previously noted that some candidate genes linked to
schizophrenia are also mutated in various cancers. These
include the gene for protein kinase B (PKB, also known as
AKT), which is commonly mutated in cancer, and the gene
for neuregulin-1, which is associated with breast cancer,
B cell leukemia/lymphoma, and multiple myeloma (42,
43). Moreover, genome-wide association studies (GWAS)
in schizophrenia have identified strong signals near the
paternal age effect genes FGFR1 (44) and FGFR2 (45), and
there is convergent evidence linking disruption of AKT (42)
and fibroblast growth factor signaling with schizophrenia
(46) as well as linking cancer-related pathways (e.g., PI3K/
AKT, PTEN) and autism (47).
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FIGURE 1. Cellular Signaling Pathways Affected by Gene Mutations Due to Greater Paternal Agea,b
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a Abbreviations: AKT, a serine/threonine-specific protein kinase, also known as protein kinase B (PKB); AR, adrenergic receptor; BRAF,
a member of the RAF (rapidly accelerated fibrosarcoma) kinase family; CBL, protein encoded by Cbl gene (named after Casitas B-lineage
lymphoma); CFC, cardiofaciocutaneous syndrome; CRAF, a member of the RAF (rapidly accelerated fibrosarcoma) kinase family; 4E-BP1, 4E
binding protein 1; ERK, extracellular-signal-regulated kinase; FGFR, fibroblast growth factor receptor gene; GDP, guanosine 5:-diphosphate;
GEF, guanine nucleotide exchange factor; GluR, glutamate receptor; GluT, glutamate transporter; GTP, guanosine 5:-triphosphate; HRAS,
enzyme encoded by the Harvey RAS-1 gene; KRAS, protein encoded by the Kirsten RAS oncogene; MAPK, mitogen-activated protein kinase;
MEK, a protein kinase (“mitogen-activated protein kinase/extracellular-signal-regulated kinase”); MEN, multiple endocrine neoplasia; MR,
mineralocorticoid receptor; mTOR, mammalian target of rapamycin (a serine/threonine protein kinase); NMDAR, N-methyl-D-aspartate
receptor; NRAS, enzyme encoded by the NRAS gene, which is associated with neuroblastoma; pAKT, phosphorylated form of AKT; PDK,
phosphoinositide-dependent kinase; pERK, phosphorylated form of ERK; PI3K, phosphatidylinositide 3-kinase; PIP, prolactin-inducible
protein; PKB, protein kinase B; PTEN, protein encoded by the phosphatase and tensin homolog gene; RAS, a family of proteins involved in
intracellular signal transmission (from “rat sarcoma”); RET, “rearranged during transfection” gene; RHEB, RAS homolog enriched in brain;
RSK2, ribosomal S6 kinase; RTK, receptor tyrosine kinase; S6K, S6 kinase; SHOC, protein encoded by “suppressor of clear homolog in C.
elegans” gene; SHP2, cytosolic SH2 domain containing protein tyrosine phosphatase; SOS, protein encoded by “son of sevenless” gene; TD,
thanatophoric dysplasia; TRKB, tyrosine-related kinase B; TSC, tuberous sclerosis complex. LEOPARD is a mnemonic of characteristic features.

b See references 5 and 32 for more details on these pathways. Germline disorders associated with mutations in specific genes along these pathways
are indicated in boxes. The gene products that belong to the class affected by paternal age (as defined in text) are in blue, and yellow boxes
indicate related disorders. Congenital disorders associated with the RAS family are known as “RASopathies.” They include the Noonan, Costello,
LEOPARD, and CFC syndromes and are caused by mutations in the RTK/RAS and MAPK pathways. Other proteins in the pathway and associated
germline disorders for which evidence of direct involvement in the process of selfish spermatogonial selection and paternal age effect is still
lacking are indicated in black. Known tumor-suppressor genes in cancer are indicated by blue ovals. The RAS pathway is involved in many
cellular processes, and some of the consequences of pathway activation are illustrated in the case of transduction occurring in a mitotically active
cell (bottom, middle) or during neurotransmission and/or synaptic plasticity (bottom, left and right). Translocation of phosphorylated forms of
ERK (pERK) or AKT (pAKT) into the nucleus of a mitotic cell triggers many different cellular responses, such as cell growth, proliferation,
differentiation, motility, and apoptosis. Within excitatory neurons, a few examples of cellular responses triggered by the RAS or RHEB pathway
are illustrated and involve molecules such as ribosomal S6 kinase (S6K and RSK2) and eukaryotic translation initiation factor 4E-BP1.
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Weak Selfish Mutations and Common
Diseases

Although sperm studies of paternal age effect mutations
have highlighted that selfish selection relies on the
activation of the RAS pathway, the role of RAS is clearly
not limited to processes occurring in the testis. This
pathway is a crucial mediator of intracellular signaling in
many contexts and is recruited at different times in
development to execute distinct functions, including cell
survival, proliferation, migration, differentiation, and
motility. Hence, dysregulation of the RAS pathway in the
adult testis is predicted to have consequences that extend
far beyond rare dominant disorders. To consider wheth-
er selfish selection could have a more pervasive role in
complex disorders, we need to compare the effect of the
strength of selfish selection occurring in the testis (which
promotes clonal expansion and leads to relative enrich-
ment in mutant sperm) and the impact that given mu-
tations are anticipated to have on the fitness of the
offspring who inherit the mutation upon germline trans-
mission. Because of the strong pathogenic germline
phenotypes they cause, paternal age effect mutations—
such as those commonly described in cancer and those
associated with paternal age effect disorders—will be
associated with lethal or deleterious phenotypes that are
unlikely to segregate in the population or have a long-term
impact on disease burden (Figure 2 top; red mutations).
However, selfish mutations providing a weaker selective
advantage in the testes (which will be enriched to a lesser
extent in sperm) are predicted to be associated with more
subtle phenotypes (such as variants with low/variable
penetrance or susceptibility). The difference in impact is
important: these mild selfish mutations are a potential
source of heritable variations that could contribute to the
genetic burden of common diseases (Figure 2, orange
mutations) and to genetic heterogeneity (Figure 2, yellow
mutations).

Does the Selfish Selection Hypothesis
Have Explanatory Power?

Clues Linking Paternal Age, Cancer, and
Neurodevelopmental Disorders

There is some evidence (5) linking advanced paternal
age with an increased risk of a range of cancer types (e.g.,
childhood brain tumors and leukemia, non-Hodgkin lym-
phoma, breast and testicular cancer). If advanced paternal
age is associated with risk of both schizophrenia and
cancer, then it might be predicted that cancer would be
more common in schizophrenia patients. However, the
epidemiological data on this issue are inconsistent (48–50),
and the effects seem to vary depending on the cancer types
considered (51). On balance, the studies show that the
incidence of cancer in individuals with schizophrenia is

lower than expected (52). Moreover, the lower risk for
several types of cancer has also been observed in un-
affected family members of schizophrenia patients, pro-
viding further support for genetic protection against
cancer in families with schizophrenia (48, 52, 53). Given
the overlap between the molecular pathways involved
in brain development and those associated with tu-
morigenesis, mutations that have been enriched in germ
cells through mechanisms such as selfish selection are
expected to modify the risk of both neurocognitive
diseases and cancer when inherited by the offspring.
As we learn more about the genetic basis of cancer and
neuropsychiatric disorders, the precise relationship
between these two broad categories of disorders may
be clarified.

Clues Related to Minor Physical Anomalies, the Cell
Cycle, and Synaptic Plasticity

The selfish selection hypothesis emerged from a group
of congenital disorders that are often characterized by
prominent craniofacial abnormalities (5). It has long
been established that minor physical anomalies are more
prevalent in individuals with schizophrenia (54) or autism
(55).
Properties of cell lines such as those obtained from

“neurosphere-derived” cells generated from olfactory
mucosal biopsies from patients with schizophrenia and
from healthy comparison subjects have been examined
(56). The patient-derived cells showed significant dysreg-
ulation of genes involved in cell cycle control (in particular,
various cyclins and several cyclin-dependent kinase 4
(CDK4) inhibitors controlling the G1/S phase transition
in the cell cycle). Changes in expression of genes and/
or proteins involved in the cell cycle are particularly
interesting because increased cell proliferation has pre-
viously been demonstrated in olfactory biopsies from
schizophrenia patients (57, 58). Induced pluripotent
stem cells from individuals with LEOPARD syndrome
(one of the RASopathies) have provided clues about the
impact of these mutations on different derived cell types
(59). It will be of interest to establish whether fibroblast-
derived induced pluripotent stem (iPS) cells from in-
dividuals with neuropsychiatric disorders can be used
to identify signaling pathways contributing to disease
phenotype (60).
There is a growing body of evidence indicating that

genes that were once thought to be involved only in cell
cycle control also ‘moonlight’ in a range of critical func-
tions in postmitotic neurons (see review by Frank and Tsai
[61]). For example, cyclins have been implicated in axonal
growth (62) and dendritic morphogenesis (63). Synaptic
function is also being linked to genes better known for
their role in cancer, cell cycle control, and differentiation
(64, 65) (Figure 1). These mechanisms may represent
important clues for understanding the links between
schizophrenia and cancer (66).
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An Integrative Model and Testable
Hypotheses

As mechanisms such as selfish selection operate in the
aging human testis, it is anticipated that over the re-
productive life of the male, mutations in germ cell
progenitors that influence cell cycle/growth control path-
ways (in particular, within the RTK/RAS signaling cascade)
will promote spermatogonial proliferation and result in
relative enrichment of mutant sperm over time. Given that
whole-genome sequencing data have confirmed that each

newborn carries 30–100 novel point mutations in its
genome (7), there is a possibility that a proportion of the
paternally derived mutations will preferentially carry
alterations in genes that fall within these selfish pathways.
These mutations would have variable consequences for
the phenotype and transmission to the next generation
(Figure 2).
Conveniently, this hypothesis may provide insights into

some of the more puzzling features of neurodevelopmen-
tal disorders, such as the nature of the “missing heritabil-
ity” associated with these genetic diseases (for more

FIGURE 2. Process of Selfish Spermatogonial Selection in the Testis and Its Consequences for the Offspringa,b
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b The pink oval (left) represents the testis of an aging man in which mutations (represented by X or circles) have occurred randomly during the
recurrent rounds of replication required for spermatogenesis. In the gray section (bottom of diagram), functionally neutral mutations are not
enriched in spermatogonial progenitors and are associated with a very low risk of transmission of individual genetic lesions in the offspring.
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details, see reference 67). Selfish selection is predicted
to promote a weak bias favoring fertilization by sperm
carrying mild pathogenic selfish alleles. Although this
process occurs at each generation, the exact nature of the
mutational hit involved is likely to be serendipitous and
therefore is anticipated to be essentially unique (“private”)
and would be identifiable only during a genome-wide un-
biased sequencing screen (i.e., not during GWAS, which
assess only common variants). Thus, this hypothesis aids
formulation of a parsimonious framework to understand
1) the association between advanced paternal age and
various neurocognitive disorders and some cancers, 2) the
complex genetic architecture of neurodevelopmental dis-
orders and the important role of de novo/private muta-
tions clustering in key signaling pathways, 3) the high
heritability, comorbidity, and high prevalence of these
deleterious conditions associated with low fertility, and 4)
the various clinical and epidemiological clues related to
dysmorphogenesis, cell cycle properties, and altered risk
of comorbid cancer.
We readily acknowledge many limitations of this broad

model. Not all neurodevelopmental disorders are caused
by de novo mutations, nor do we propose that all genetic
factors related to these disorders are restricted to RTK/RAS
and related pathways. However, we hope that the selfish
selection hypothesis will be useful as a catalyst for debate,
data interpretation, and new hypothesis-driven research.
Following is a list of testable hypotheses based on this
mechanism.
1. Whole-genome sequencing of family trios has dem-

onstrated a significant excess of paternally derived de
novo mutations (7). Although, as a whole, the number of
de novo mutations correlates with the father’s age, selfish
selection predicts that mutations dysregulating signaling
pathways such as RTK/RAS and their downstream ef-
fectors will be overrepresented in the offspring of older
fathers. The relationship between paternal age and de
novo mutational load should therefore be examined in-
dependently for different categories of genetic alterations.
Thus, the correlation between paternal age and de novo
mutations in genes falling in selfish pathways will be great-
er than for neutral mutations.
2. Sequencing of multiple individual sperm from men

of different ages will confirm the correlation between
paternal age and excess of de novo mutations dysregulat-
ing selfish pathways such as RTK/RAS.
3. Susceptibility variants for schizophrenia and autism

risk will be significantly more likely to affect pathways in-
volved in the cell cycle and the RTK/RAS signaling cas-
cade than would be predicted by chance.
4. Patient-derived cell lines (e.g., olfactory neurospheres,

iPS cell lines) from patients with disorders related to
paternal age, such as schizophrenia and autism, will be
more likely to display phenotypic changes related to the
RTK/RAS signaling pathway than would be predicted by
chance.

Conclusions

So far, data have indicated that the RTK/RAS pathway
is a crucial mediator of selfish selection. As we learn
more about the mechanisms controlling spermatogonial
proliferation, the preceding hypotheses should expand
beyond the canonical RTK/RAS cascade and include other
signaling pathways that are potential targets for selfish
selection. Combining this knowledge with our understand-
ing of the genetic networks involved in neurodevelopmen-
tal disorders should help define the extent of the overlap
between the two processes. Ultimately, this will provide
insights into a broader research question: Are mutations
associated with these complex disorders part of a “normal”
process that produces genetic variation with each gener-
ation and are therefore the unavoidable consequence of
a selfish mechanism originating in the aging testis?
The selfish spermatogonial selection hypothesis pro-

vides an example of the creative intersection of diverse
research fields—in this case, epidemiology, animal mod-
els, molecular and clinical genetics, genomics, oncology,
cell biology, and psychiatry. From a public health per-
spective, the impact of advanced paternal age on health
outcomes may become more apparent over time, as
parenthood is delayed in many societies as a result of
educational and cultural factors (reviewed in reference
25). Because these mutations are proposed to accumulate
over several generations, mechanisms related to selfish
selection could have far-reaching consequences for the
health of future generations.
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