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Objective: Substance-dependent individ-
uals make poor decisions on the Iowa
Gambling Task, a reward-related decision-
making task that involves risk and un-
certainty. Task performance depends on
several factors, including how sensitive
individuals are to feedback and how well
they learn based on such feedback. A
physiological signal that guides decision
making based on feedback is prediction
error. The authors investigated whether
disruptions in the neural systems under-
lying prediction error processing in
substance-dependent individuals could
account for decision-making performance
on a modified Iowa Gambling Task.

Methods: Thirty-two substance-dependent
individuals and 30 healthy comparison sub-
jects played a modified version of the Iowa
Gambling Task during MR scanning. Trial-to-
trial behavior and functional MRI (fMRI)
blood-oxygen-level-dependent (BOLD) sig-
nal were analyzed using a computational
model of prediction error based on internal

expectancies. The authors investigated how
well BOLD signal tracked prediction error in
the striatum and the orbitofrontal cortex as
well as over the whole brain in patients
relative to comparison subjects.

Results: Comparedwith healthy subjects,
substance-dependent patients were less
sensitive to loss comparedwith gain,made
less consistent choices, and performed
worse on the modified Iowa Gambling
Task. The ventral striatum and medial
orbitofrontal cortex did not track predic-
tion error as strongly in patients as in
healthy subjects.

Conclusions: Weaker tracking of predic-
tion error in substance-dependent relative
to healthy individuals suggests that altered
frontal-striatal error learning signals may
underlie decision-making impairments in
drug abusers. Computational fMRI may
help bridge the knowledge gap between
physiology and behavior to inform research
aimed at substance abuse treatment.

(Am J Psychiatry 2013; 170:1356–1363)

Drug addiction is characterized by poor decision
making associated with urges to seek and take drugs de-
spite knowledge of harmful consequences. One model of
addiction suggests that pathological decision making
reflects a disruption in the generation of physiological
signals that indicate discrepancies between expected
and received outcomes (1–3). These signals, broadly
termed prediction error, are driven by dopamine release
in the striatum and are critical for learning because they
guide adjustments in short-term decisions to achieve
long-term goals (4). Addiction is hypothesized to usurp
these normal learning processes (5, 6). However, despite
research suggesting that drugs adversely affect predic-
tive learning signals in animals (3), few such studies
have been conducted in drug users. One challenge is a
limited understanding of processes that link physiology
(i.e., learning signals) to behavior (i.e., pathological decision
making). Computational model-based functional MRI
(fMRI) methods have the potential to bridge this gap (2, 7).

Few model-based fMRI studies of prediction error
learning have been conducted in drug users. One study
in smokers (8) and another in alcohol-dependent men (9)

did not find evidence of altered prediction error learning
signals in the striatum. While nicotine and alcohol share
mechanisms of drug addiction, most of the research
suggesting maladaptive predictive learning involves stimu-
lants. Yet, no study to date has investigated prediction error
learning signals in stimulant-dependent individuals using
a clinically valid measure of decision making.
The Iowa Gambling Task is a reward-related decision-

making task involving risk and uncertainty. It is sensitive
to decision-making deficits in patients with ventral medial
frontal lesions and in clinical populations that include
substance users (10–13). The goal of the task is to earn as
much money as possible by selecting from four decks of
cards. Two of the decks are associated with large gains and
occasional large losses that, over time, yield a net loss; the
other two decks are associated with small gains and small
losses that, over time, yield a net gain. In order to succeed,
subjects must learn to forgo the “risky decks” with imme-
diate large gains in favor of “safe decks” with small gains.
Task performance is influenced by sensitivity to reward
and risk, temporal foresight, mental flexibility, and emo-
tion. Cognitive models have been useful for separating
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some of these processes and have shown, for example, that
compared with healthy subjects, cocaine users’ perfor-
mance on the task reflects lower sensitivity to loss and
lower response consistency (14).
The neural correlates of decision making on the Iowa

Gambling Task have been studied (15–18). Most of these
studies model fixed conditions (i.e., decision versus no de-
cision or high- versus low-risk trials) rather than modeling
changes that track learning over time. To investigate this
critical aspect of performance, activity from initial phases of
the task can be compared with later phases (18–20). While
this provides a good first approximation of learning, com-
putational fMRI allows for stronger inferences of biological
mechanisms, such as how well neural structures track trial-
to-trial prediction error during learning (21). Computational
model-based fMRI studies in healthy subjects suggest that
the medial prefrontal cortex and striatum track prediction
error during learning on the IowaGambling Task (18, 22, 23).
Our goal in this study was to determine whether the

tracking of prediction error is altered in stimulant-
dependent individuals. We used a computational model
of prediction error and a modified version of the Iowa
Gambling Task to test the hypothesis that substance-
dependent individuals would have reduced tracking of
prediction error in the striatum and orbitofrontal cortex
relative to comparison subjects. Such a finding could
suggest a mechanism for poor decision making in sub-
stance users and inform future research aimed at therapy.

Method

Subjects

Forty-two substance-dependent patients and 36 healthy com-
parison subjects were recruited. Ten of the substance-dependent
patients and six comparison subjects were excluded (three were
excluded because of diagnostic exclusions, four because of scanner
failure, and nine because of head motion exceeding 3 mm). Data
are reported on 32 substance-dependent patients (19 of them
male; age range, 22–50 years, with a mean of 36.6 years [SD=9.0])
and 30 comparison subjects (15 of them male; age range, 20–49
years, with amean of 34.5 years [SD=7.5]), on whom some behavioral
data have been published previously (24). The two groups had
a similar mean IQ (comparison group: mean=103.3, SD=12.7,
range=82–126; patient group: mean=102.2, SD=10.3, range=83–125).

Patients with DSM-IV stimulant dependence were recruited
from a residential drug treatment program at the University of
Colorado Denver Addiction Research and Treatment Service.
Other dependence diagnoses and the duration of dependence
and abstinence are listed in Table 1. Average abstinence was 1.9
years.

Community comparison subjects were recruited using adver-
tisements, flyers, and a marketing company. Volunteers were
excluded if they met DSM-IV criteria for drug or alcohol
dependence.

Exclusion criteria included head trauma with loss of con-
sciousness exceeding 15 minutes, neurological disease, schizo-
phrenia, bipolar disorder, and current major depression. All
participants provided written informed consent as approved by
the Colorado Multiple Institutional Review Board and completed
diagnostic and structured interviews, behavioral tasks, and MRI
scanning.

Interviews and Tasks

We used the Composite International Diagnostic Interview–

Substance Abuse Module (25), a computerized structured in-
terview, to characterize the DSM-IV dependence diagnoses for
amphetamine, cocaine, marijuana, alcohol, tobacco, hallucino-
gens, opioids, inhalants, sedatives, club drugs, and phencyclidine.
Specific modules of the Diagnostic Interview Schedule–Version IV
were administered to exclude schizophrenia, bipolar disorder, cur-
rent major depression (,2 months) and to assess for antisocial per-
sonality disorder, which was not exclusionary. IQ was assessed with
the Wechsler Abbreviated Scale of Intelligence (WASI). The WASI
Two-Subtest Form was used to estimate general intelligence (Psy-
chological Corporation, 1999). We also administered the Barratt
Impulsiveness Scale, a 30-item self-report questionnaire that pro-
vides a measure of impulsivity (26).

We used a modified version of the Iowa Gambling Task (27).
Subjects were shown four decks of cards and instructed to try to
earn as much money as possible by choosing to either play or
pass on a given deck. “Play” resulted in a single positive or
negative monetary value, along with the running total. “Pass”
resulted in no change. Decks differed in the magnitude and
frequency of wins and losses. Two of the four decks resulted in
a net gain; the other two decks resulted in a net loss. To perform
well, subjects had to learn to “play” good decks and “pass” bad
decks over time. Task details have been described elsewhere (24);
a diagram of the task is provided in the data supplement that
accompanies the online edition of this article. The decision
period was 2 seconds, and the outcome period was 4 seconds.
Each deck was presented 50 times (for a total of 200 trials) in
pseudorandom order, interspersed with 65 6-second fixation
trials. Total scan time was 26.4 minutes, divided into three runs
of 8.8 minutes each.

TABLE 1. Drug Parameters in Substance-Dependent Patients and Healthy Comparison Subjects

Patients (N=32) Comparison Subjects (N=30)

Duration of
Dependence (Years)

Duration of
Abstinence (Years)

Duration of
Dependence (Years)

Duration of
Abstinence (Years)

Drug N % Mean Range Mean Range N % Mean Range Mean Range

Stimulants 32 100 14.4 2–34 1.7 0.3–6 0
Nicotine 26 81 21.6 5–37 0.3 0–2 5 17 22.0 10–32 4.8 0–14
Alcohol 15 47 19.5 5–31 1.3 0.1–3 0
Opioids 5 16 16.4 5–28 1.8 0.4–6 0
Cannabis 4 13 19.8 11–31 0.9 0.4–2 0
Othera 7 22 8.3 2–13 7.5 3–8 0
a “Other” includes only hallucinogens and phencyclidine.
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Expectancy Valence Model

Prediction error is the difference between expected and re-
ceived outcome. For each subject and for each trial, prediction
error was computed as the difference between the individual’s
internally generated expected outcome (termed “valence”) and
actual outcome. The expectancy valence model, adapted from
Stout et al. (28), deconstructs decision making on the Iowa
Gambling Task into three processes: sensitivity to loss (v),
recency or updating (a), and response consistency (c). Model
details are provided in the online data supplement.

MRI Acquisition and Preprocessing

Acquisition. Images were acquired on a 3.0-T scanner using
a quadrature head coil. Functional images were acquired with
a gradient-echo T2* blood-oxygen-level-dependent (BOLD) con-
trast technique, TR=2,000 ms, TE=30 ms, field-of-view 220 mm2,
64364 matrix, 30 slices, 4 mm thick, no gap, angled parallel to the
planum sphenoidale. To reduce inferior frontal susceptibility
artifact, we used a volume-selective z-shimmed image acquisi-
tion (29). MR-compatible goggles were used for visual stimuli,
and responses were recorded with a two-button response device.

Preprocessing. The first four image volumes from each run
were excluded for saturation effects. Data were processed and
analyzed using SPM8 (http://www.fil.ion.ucl.ac.uk/spm/soft-
ware/spm8/). Functional data were realigned to the first volume.
Data were excluded for head motion exceeding 3 mm. The
realigned images were normalized to Montreal Neurological
Institute space. Data were smoothed with a 6-mm full width at
half maximum Gaussian kernel. The final smoothness of the data
after preprocessing was 8.238.437.9 mm3 and was used in the
Monte Carlo simulations to determine cluster-wise corrected
threshold levels.

fMRI Data Analysis

First-level model. fMRI time-series data were analyzed using
the general linear model after filtering low-frequency noise,
correcting for temporal autocorrelation, and convolving the
stimulus function with a canonical hemodynamic response
function. The regressor of interest was the trial-to-trial prediction
error. Regressors of no interest were deck, run, and play. The play
regressor controls for the mean effect of a play response dur-
ing the stimulus phase. By including this regressor, the variability
in signal captured by the prediction error regressor is more likely
to capture the processes associated with prediction error com-
puted at the time of the outcome.

Second-level model. Contrast maps for the prediction error
regressor were brought to the second level and analyzed using
whole-brain and region-of-interest analyses.

Whole brain. Whole-brain group comparison was conducted
using a two-sample t test with education as a covariate, as this
variable differed between groups. The statistical threshold was
set at a voxel level of p,0.005, uncorrected, and p,0.01 whole-
brain cluster-corrected, corresponding to an extent threshold of
39 voxels based on 10,000 Monte Carlo simulations using
AlphaSim in the AFNI program (http://afni.nimh.nih.gov/afni/).

Regions of interest. Based on the literature, four regions of
interest were defined: the ventral striatum, the dorsal striatum,
the medial orbitofrontal cortex, and the lateral orbitofrontal
cortex. The medial orbitofrontal cortex consisted of Brodmann’s
area (BA) 25, BA 32, and medial BA 11. The lateral orbitofrontal
cortex consisted of BA 47, BA 12, and BA 10. The boundaries of
the ventral and dorsal striatum were manually drawn (30). Re-
gions of interest were created using the Wake Forest University

PickAtlas (see the online data supplement). Time-series data
were extracted for each region of interest using the MarsBaR
toolbox in SPM8.

Statistical Analysis

Demographic and behavioral data were tested for normality
and analyzed with two-tailed t tests or chi-square tests, for con-
tinuous and categorical variables, respectively.

Modified Iowa Gambling Task performance and valence
model parameters. Performance was analyzed with a 232
(group-by-time) repeated-measures analysis of variance on net
score. Net score is the number of plays on good decks minus the
number of plays on bad decks. Since there were 50 trials for each
deck, net score was calculated for the first half and for the second
half, consisting of 25 trials each.

The three parameters (v, a, c) from the expectancy valence
model of the Iowa Gambling Task were analyzed with a boot-
strapping procedure because the parameters were highly skewed.
Parameters were compared across the group by bootstrapping the
sampling distribution of the mean difference between groups
(5,000 iterations).

Regions of interest. For each region, fMRI signal (beta estimates)
for prediction error tracking was first analyzed in all subjects using
a one-sample t test and then compared across groups using a two-
sample t test after adjusting for education.

Correlations among fMRI signal, behavioral measures, and
drug characteristics. fMRI signal, duration of abstinence, duration
of drug use, impulsivity score, and decision-making parameters
were correlated within group using Pearson’s r and Spearman’s rho
for normal and nonnormal data, respectively.

Results

Demographic Characteristics and Behavior

The patient and comparison groups were not signifi-
cantly different in mean age (36.6 years [SD=9.0] and 34.5
years [SD=7.5], respectively), gender distribution (19 men
and 13 women compared with 15 men and 15 women),
and mean IQ (102.2 [SD=10.3] compared with 103.3
[SD=12.7]). Comparison subjects had more years of edu-
cation on average than did patients (14.3 years [SD=1.9]
comparedwith 12.0 years [SD=2.3], p,0.001), so education
was entered as a covariate in all group comparisons.
Patients weremore impulsive on average than comparison
subjects (mean Barratt Impulsiveness Scale score, 70.1
[SD=9.5] compared with 59.7 [SD=7.0], p,0.001). Thirty-
two patients and 11 comparison subjects met criteria for
antisocial personality disorder.

Drug Characteristics

Table 1 lists dependence diagnoses and duration of
dependence and abstinence.

Behavioral Performance on the Modified Iowa
Gambling Task

As shown in Figure 1, a significant group-by-time inter-
action was observed on net score, which improved over
time in the comparison group but not in the patient group
(F=4.09, df=1, 58, p=0.05; in the comparison group, the
mean net score was 4.62 [SD=1.3] for the first 25 trials

1358 ajp.psychiatryonline.org Am J Psychiatry 170:11, November 2013

REDUCED NEURAL TRACKING OF PREDICTION ERROR IN SUBSTANCE DEPENDENCE

http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
http://afni.nimh.nih.gov/afni/
http://ajp.psychiatryonline.org


and 6.97 [SD=1.7] for the next 25 trials; in the patient
group, these values were 4.18 [SD=1.3] and 4.05 [SD=1.62],
respectively).

Expectancy valence model parameters (v, a, c). Patients’
decisions were significantly less consistent over time than
those of the comparison subjects (c=20.46 and c=20.01,
respectively; p=0.02). Patients also showed a lower sensi-
tivity to loss, although this difference did not reach statis-
tical significance (v=0.16 and v=0.26, respectively; p=0.06).
There was no group difference in recency (a) (see Table S4
in the online data supplement).

Imaging

Whole-brain analysis. Figure 2 shows prediction error-
related signal in the ventral striatum and medial or-
bitofrontal cortex in the comparison group and the
patient group, as well as the group difference. Patients
had weaker tracking of prediction error in the medial
orbitofrontal cortex. Table 2 lists significant clusters of
lower prediction error-related activity in patients rela-
tive to comparison subjects in the left insula, thalamus,
and left superior temporal gyrus. There were no regions
of higher prediction error-related fMRI signal in patients
relative to comparison subjects.

Region-of-interest analysis. Table 3 presents the results of
one-sample t tests across all subjects and two-sample
t tests of prediction error fMRI signal. Across all subjects,
there was tracking of prediction error in the ventral
and dorsal striatum and the medial orbitofrontal cortex.
Relative to comparison subjects, patients did not track
prediction error as strongly in the medial orbitofrontal
cortex (t=2.3, df=61, p=0.01) and the ventral striatum
(t=1.9, df=61, p=0.03). There were no group differences in
the dorsal striatum or the lateral orbitofrontal cortex.

Correlations. In the comparison group, decision-making
consistency correlated with fMRI signal in the lateral
(r=0.39, p,0.05) and medial orbitofrontal cortex (r=0.43,
p,0.05). Recency correlated negatively with fMRI signal
in the lateral orbitofrontal cortex (r=20.37, p,0.05).
Impulsivity correlated negatively with response consis-
tency (r=20.38, p,0.05). In contrast, in the patient
group, fMRI signal did not correlate with any behavioral
measures.

Discussion

Effect of Substance Dependence on Striatal
Prediction Error

Relative to comparison subjects, substance-dependent
individuals showed a significantly weaker relationship
between prediction error and fMRI signal in the ven-
tral striatum and medial orbitofrontal cortex. This finding
is consistent with a large body of evidence of altered
striatal function related to drug abuse. While it is firmly

established that drugs act on the striatal dopaminergic
reward circuitry, the development of addiction also likely
involves non-reward processes involving learning and
decision making (5). Cue learning, for example, is driven
by dopaminergic signals that track prediction error and
is thought to be altered in addiction. Animals exposed to
cocaine show abnormal striatal firing during odor dis-
crimination learning in which rats learned that one odor
predicted sucrose and another predicted quinine (3). Cue-
selective activity was recorded in dopaminergic striatal
neurons. Control rats showed stronger cue-selective ac-
tivity in the ventral striatum compared with cocaine-
treated rats, which is consistent with our results. We found
no group difference in activity in the dorsal striatum, which
is somewhat inconsistent with other studies. Cocaine ad-
dicts, for example, show greater dorsal striatal dopamine
release when viewing drug-related compared with neutral
videos, suggesting that cocaine shifts the representation of
learning signals from the ventral striatum, which involves
reward and motivation, to the dorsal striatum, which in-
volves habit learning (31). Dorsal striatal activity is hy-
pothesized to prime individuals to engage in habitual
behaviors, such as procuring drugs (6, 32). Our finding that
prediction error tracking was represented in the dorsal
striatum for both groups, but with no difference between
them, may be related to the fact that our decision-making
task is unlikely to induce the strong habit-learning that
would be expected for drug cues.

Effect of Substance Dependence on Orbitofrontal
Cortex Expectancies

Cue-selective firing during prediction learning is not
unique to the striatum but is also found in prefrontal

FIGURE 1. Decision Making on a Modified Iowa Gambling
Taska
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a Net score is the number of plays on good decks minus the number
of plays on bad decks; it was calculated for the first half and for the
second half of the task, consisting of 25 trials each. The figure
shows improvement over time in net score in the comparison
group but not in the substance-dependent group.
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cortex neurons (33, 34). Stalnaker et al. (35) showed that
cocaine-treated rats fail to develop cue-selective firing
in orbitofrontal cortex neurons using the odor discrimi-
nation task described above. Furthermore, when the odor-
outcome pairings were reversed, these neurons failed to
demonstrate normal reversal of cue-selective firing in
cocaine-treated compared with saline-treated rats, sug-
gesting that drugs disrupt learning signals processed in
the orbitofrontal cortex. Our finding of weaker tracking
of prediction error in the medial orbitofrontal cortex in
patients relative to comparison subjects is consistent
with these studies. Drugs may disrupt outcome expectan-
cies encoded in the orbitofrontal cortex and prevent the
striatum from accurately updating prediction error (34).
This is consistent with reduced frontal-striatal connectiv-
ity reported in alcohol-dependent patients and suggests
a disruption in the transfer of prediction error signals
from the striatum to the orbitofrontal cortex (9). Another
hypothesis is that dopaminergic striatal activity serves as
a gating signal to the prefrontal cortex and that drug
exposure dampens the ability of natural rewards to open
the gating so that the orbitofrontal cortex can influence
decision making (5).

Our finding that group differences in prediction error
involved the medial more than the lateral orbitofrontal
cortex confirms the critical role of the ventromedial
prefrontal cortex in performance on the Iowa Gambling
Task (27). It also supports the notion that the medial and
lateral orbitofrontal cortex play distinct roles in reward-
related decisionmaking. Themedial orbitofrontal cortex

has been more strongly associated with motivation, un-
certainty, valuation, and effort. The lateral orbitofrontal
cortex has been associated with processing aversive
outcomes (36) or suppressing unrewarded responses
(37). The lateral orbitofrontal cortex is thought to exert
top-down control, planning how to achieve goals and
passing the information to the medial orbitofrontal
cortex, which evaluates the cost-benefit balance of
those plans and estimates and monitors expected value
(38). In our study, fMRI signal in the orbitofrontal cor-
tex correlated positively with response consistency
and negatively with recency valence estimates in com-
parison subjects but not in patients, suggesting that
the orbitofrontal cortex plays a role in computing ex-
pected valence and may be affected in drug users. These
correlates were weak, however, and would need to be
replicated.

Model-Based fMRI in Drug Users

Although this was not the first study to investigate
neural correlates of prediction error in addiction, it is the
first to report differences in individuals with stimulant
dependence. Park et al. (9) reported no difference in
striatal prediction error in alcohol-dependent compared
with healthy men performing a probabilistic learning
task, while Chiu et al. (8) found no difference in smokers
compared with nonsmokers playing a stock market
simulation task. Our study differs from these studies
in several ways. First, the substance use problems in
our population were more severe. Second, we used

FIGURE 2. Neural Tracking of Trial-to-Trial Prediction Error in Healthy Comparison Subjects and Substance-Dependent
Individualsa
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a Difference maps show higher activity in the medial orbitofrontal cortex in the comparison group relative to the substance-dependent group.
All maps are thresholded at p,0.01, corrected for multiple comparisons using cluster correction, voxel-level p,0.005.
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a non-commercially available z-shim MR pulse sequence
that increases signal in the orbitofrontal region (29). Third,
the study tasks differed in cognitive demand. Finally, the
use of internally generated (i.e., subjective) prediction
error signals could be more sensitive than externally
computed (i.e., objective) prediction error signals. For
example, Stout et al. (39) showed that a cognitive model of
internally generated valence predicted behavior on the
Iowa Gambling Task better than a linear model based
on externally computed valence, consistent with our
finding that the valence model described task behavior
better than a conventional reinforcement learning model.
We argue that brain activity should more closely track
internally generated compared with externally computed
expectancy.

Cognitive Processes Underlying Decision Making on
the Modified Iowa Gambling Task

Relative to the comparison group, the patient group did
not show an improvement in decision making over time,
consistent with previous studies (12, 40). Performance on
the Iowa Gambling Task is influenced by many factors,
including reward sensitivity, ability to forgo short-term
in favor of long-term gain, impulsiveness, and cognitive
flexibility. The expectancy valence model disentangles
some of the processes (14) by parameterizing sensitivity
to gain and loss (risk), discounting of prior experiences
(recency), and consistency between expectancies and
choice (28). Despite the modifications to the original Iowa
Gambling Task (i.e., subjects were not free to select but
rather a deck was selected for them), our results were
consistent with previous model studies in drug users (28,
41). The finding that substance users’ decisions were less

consistent and less sensitive to loss than comparison
subjects’ may reflect impulsiveness and “myopia for the
future.”
Most neuroimaging studies of the Iowa Gambling Task

model specific trial conditions (i.e., decision versus no
decision or high versus low risk). Brain regions implicated
in these models include the medial and lateral prefrontal
cortex, the cingulate cortex, the striatum, and the insula
(16–19). These models, however, fail to account for learn-
ing. To approximate this critical aspect of the task, Li et al.
(18) compared brain activity from the first and last blocks
of the task and found that orbitofrontal cortex activity
increased over time. In contrast, Lawrence et al. (19) re-
ported less activity in the orbitofrontal cortex and insula
over time. One possibility for these inconsistencies is that
individuals learn at different rates. Model-based fMRI
accounts for variations in learning and has been applied
to the Iowa Gambling Task (18, 23). Christakou et al. (23)
found that the right ventromedial prefrontal cortex was
sensitive to individuals’ negative expectancies. Although
we did not separate positive from negative expectancies,
our finding of ventral medial activity related to global
expectancy is consistent with these results (23). Li et al.
(18) also found that prediction error correlated with
activity in the ventral striatum and the middle frontal gyri.
Both of these previous studies, however, used externally
derived prediction estimates. Our study extends model-
based fMRI studies for the first time using internally
derived prediction estimates in substance-dependent
individuals.
Strengths of this study include the use of a computa-

tional model based on internally generated valence, the
relatively large sample size of 32 patients, the use of an
MR pulse sequence that increases orbitofrontal cortex
signal compared with conventional MRI sequences, and
a comparison group matched on IQ. Limitations include
an inability to directly compare results to the Iowa
Gambling Task, an inability to determine whether drug
use preceded or antedated neural changes, the abuse of
multiple drug classes in our sample, and the lack of
control for medications. We cannot exclude the possi-
bility that antisocial personality disorder could account

TABLE 2. Significant Clusters of Group Differences in Pre-
diction Error Processing Using Whole-Brain Analyses

MNI
Coordinatesa

Contrast and Region x y z t Extent (df=61)

Comparison subjects
> patients

Left medial
orbitofrontal cortex

–15 48 –18 4.13 214

Right medial
orbitofrontal cortex

15 33 –18 4.07
5 9 –29 3.50

Thalamus 0 –15 0 4.10 154
18 –18 12 3.47
15 –9 6 3.42

Left insula –39 30 24 4.02 94
–33 –30 24 3.63
–30 –18 12 3.59

Left superior
temporal gyrus

–54 –3 –12 3.51 45
–51 –18 –5 3.00

Patients > comparison
subjects

No regions
a MNI=Montreal Neurological Institute.

TABLE 3. Prediction Error Tracking in Anatomically Defined
Regions of Interesta

Region All

Comparison
Subjects .
Patients

Patients .
Comparison
Subjects

Dorsal striatum ,0.001 0.12 0.88
Ventral striatum ,0.001 0.03 0.97
Medial orbitofrontal
cortex

0.01 0.01 0.93

Lateral orbitofrontal
cortex

0.10 0.07 0.99

a The table lists p values for one-sample t tests across all subjects and
two-sample t tests.
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for some results, as this diagnosis was common in both
groups.

In summary, decision-making deficits in substance
users compared with healthy subjects were related to
inconsistent choices and reduced neural tracking of
prediction error signals in the striatum and orbitofrontal
cortex, suggesting that frontal-striatal pathways involved
in learning may be a target for future treatment.
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