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Objective: In schizophrenia, alterations
within the prefrontal cortical GABA system
appear to be most prominent in neurons
that contain parvalbumin or somatostatin
but not calretinin. The transcription factors
Lhx6 and Sox6 play critical roles in the
specification, migration, and maturation
of parvalbumin and somatostatin neurons,
but not calretinin neurons, and continue
to be strongly expressed in this cell type-
specific manner in the prefrontal cortex
of adult humans. The authors investigated
whether Lhx6 and/or Sox6 mRNA levels
are deficient in schizophrenia, which may
contribute to cell type-specific disturbances
in cortical parvalbumin and somatostatin
neurons.

Method: The authors used quantitative
PCR and in situ hybridization with film and
grain counting analyses to quantify mRNA
levels in postmortem samples of pre-
frontal cortex area 9 of 42 schizophrenia
subjects and 42 comparison subjects who

had no psychiatric diagnoses in life, as well
as antipsychotic-exposed monkeys.

Results: In schizophrenia subjects, the
authors observed lower mRNA levels for
Lhx6, parvalbumin, somatostatin, and glu-
tamate decarboxylase (GAD67; the princi-
pal enzyme in GABA synthesis), but not
Sox6 or calretinin. Cluster analysis revealed
that a subset of schizophrenia subjects con-
sistently showed the most severe deficits
in the affected transcripts. Grain counting
analyses revealed that some neurons that
normally express Lhx6 were not detect-
able in schizophrenia subjects. Finally,
lower Lhx6mRNA levels were not attribut-
able to psychotropic medications or ill-
ness chronicity.

Conclusions: These data suggest that in
a subset of individuals with schizophrenia,
Lhx6 deficits may contribute to a failure of
some cortical parvalbumin and somato-
statin neurons to successfully migrate or
developadetectable GABA-ergic phenotype.

(Am J Psychiatry 2012; 169:1082–1091)

Prefrontal cortex-related cognitive impairments in
schizophrenia have been linked to disturbances in the
inhibitory system, such as deficits in the GABA synthe-
sizing enzyme glutamate decarboxylase (GAD67) (1–6).
Alterations in cortical GABA neurons are most prominent
in the subsets that contain the calcium-binding protein
parvalbumin or the neuropeptide somatostatin but not in
the subset that expresses the calcium-binding protein
calretinin. For example, mean levels of parvalbumin,
somatostatin, and GAD67 mRNAs in the prefrontal cortex
have been consistently reported to be lower in cohorts of
schizophrenia subjects, but not all schizophrenia sub-
jects in each cohort had lower levels than their matched
comparison subjects (5, 7–10). The pathogenetic mecha-
nisms that lead to the molecular pathology of specific
GABA cell types that are prominent in a subset of schizo-
phrenia subjects are not known; however, factors related
to the developmental origin of the different GABA neuron
subpopulations may play a role.

Indeed, the specification of cortical GABA neurons into
distinct subpopulations is related to the location of their orig-
ination and is regulated by cell type-specific transcription

factors. For example, parvalbumin and somatostatin
neurons originate from the medial ganglionic eminence
of the subpallium in humans and rodents (11–16),
whereas calretinin neurons derive from the subventric-
ular zone of the dorsal pallium, at least in primates
and humans (14–18). Furthermore, during the prenatal
period, certain transcription factors (e.g., Lhx6 and Sox6)
selectively regulate the ontogeny (i.e., cell type specifica-
tion, tangential migration, and maturation) of parvalbu-
min and somatostatin neurons, but not calretinin neurons
(19–22). A complete loss of Lhx6 or Sox6 in prenatal periods
leads to slowed tangential migration to the cerebral cortex,
impeded differentiation into parvalbumin and somatostatin
neurons, and altered GAD67 levels (19–22). These lines of
evidence suggest that in schizophrenia, early developmental
disturbances, such as altered expression of cell type-specific
transcription factors, may lead to persisting deficits that
predominantly affect parvalbumin and somatostatin neu-
rons, but not calretinin neurons.
Although it is not feasible to directly study embryonic

cortical GABA neuron ontogeny in schizophrenia, some
postmortem studies of adult schizophrenia subjects have
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provided evidence suggestive of arrested migration of
somatostatin neurons (23) and of failure of parvalbumin
neurons to develop a GABA-ergic phenotype (7). In-
terestingly, Lhx6 and Sox6 continue to be selectively
and robustly expressed by virtually all parvalbumin and
somatostatin neurons in adult cortex of humans and
rodents (13, 19, 21, 22, 24). In this study, we sought to
determine whether mRNA levels for Lhx6 and Sox6 in
postmortem human prefrontal cortex are deficient in
schizophrenia and whether such deficits are especially
prominent in schizophrenia subjects with clear deficits in
parvalbumin, somatostatin, and GAD67 mRNAs.

Method

Human Subjects

Brain specimens were obtained during routine autopsies con-
ducted at the Allegheny County Medical Examiner’s Office af-
ter consent was obtained from next of kin. An independent
committee of experienced research clinicians made consensus
DSM-IV (25) diagnoses for each subject using structured inter-
views with family members and review of medical records (26),
and the absence of psychiatric diagnoses was confirmed in
comparison subjects. To control for experimental variance,
subjects with schizophrenia or schizoaffective disorder (N=42)
were matched individually to one comparison subject for sex
and as closely as possible for age (see Table S1 in the data
supplement that accompanies the online edition of this article),
as previously described (6, 26, 27), and samples from subjects in
a pair were processed together throughout all stages of the
study. Some subject pairs had previously been studied for
parvalbumin (N=19), somatostatin (N=23), and calretinin (N=19)
mRNA levels, mostly by in situ hybridization (see Table S1) (7–9,
28). The mean age, postmortem interval, freezer storage time,
brain pH, and RNA integrity number (RIN; Agilent Bioanalyzer,
Santa Clara, Calif.) did not differ between subject groups (Table 1),
and each subject had a RIN $7.0. All procedures were approved
by the University of Pittsburgh Committee for the Oversight of
Research Involving the Dead as well as the university’s In-
stitutional Review Board.

Preparation of Human Brain Tissue

Frozen tissue blocks containing the middle portion of the right
superior frontal sulcus were confirmed to contain prefrontal
cortical area 9 using Nissl-stained, cryostat tissue sections for
each subject (2). Standardized amounts of cortical gray matter
from tissue blocks were collected in TRIzol reagent in a manner

that ensured minimal white matter contamination and excellent
RNA preservation (8) (see the supplemental Method section in
the online data supplement).

Quantitative PCR

Complementary DNA (cDNA) was synthesized from standard-
ized dilutions of total RNA (10 ng/ml) for each subject. All primer
pairs (see Table S2 in the online data supplement) demonstrat-
ed high amplification efficiency (.96%) across a wide range of
cDNA dilutions and specific single products in dissociation
curve analysis. Quantitative PCR (qPCR) was performed using the
comparative cycle threshold (CT) method with Power SYBR
Green dye and the StepOnePlus Real-Time PCR System (Applied
Biosystems, Carlsbad, Calif.), as previously described (see the
supplemental Method section in the online data supplement).
Based on their stable relative expression level between
schizophrenia and comparison subjects (8), three reference
genes (beta actin, cyclophilin A, and glyceraldehyde-3-
phosphate dehydrogenase) were used to normalize target
mRNA levels. The difference in CT (dCT) for each target
transcript was calculated by subtracting the geometric mean
CT for the three reference genes from the CT of the target
transcript (mean of four replicate measures), and differences
between diagnostic groups were determined using the average
dCT of each group. Because dCT represents the log2-transformed
expression ratio of each target transcript to the reference genes,
the relative level of the target transcript for each subject is reported
as 22dCT (8, 26, 27, 29).

In Situ Hybridization

A 988-base pair fragment corresponding to bases 1880–2867 of
the human Lhx6 gene (NM_014368) was PCR-amplified, and
nucleotide sequencing confirmed 100% homology for the
amplified fragment to the reported sequence. Sense and
antisense 35S-labeled riboprobes were generated by in vitro
transcription, and hybridization procedures were performed
using three sections from each subject, which were then exposed
to Biomax MR film (Kodak, Rochester, N.Y.), coated with nuclear
emulsion, developed, and counterstained with cresyl violet, as
previously described (2, 7, 9) (see the supplemental Method
section in the online data supplement). Optical density was
measured in the gray matter, including individual cortical
layers, using film autoradiographs, as previously described (30)
(see the supplemental Method section). To evaluate Lhx6 mRNA
expression at the cellular level, the numbers of silver grains
generated by the 35S-labeled riboprobe in emulsion-dipped
sections were counted over neurons in sampling frames placed
in layers 3 and 6 (see the supplemental Method section and
Figure S1 in the online data supplement). Within the frames,
the number of grains was counted in a circle with a fixed

TABLE 1. Summary of Demographic and Postmortem Characteristics of Human Subjectsa

Measure Comparison Group (N=42) Schizophrenia Group (N=42)

N % N %
Male 31 74 31 74
White 34 81 29 69
Black 8 19 13 31

Mean SD Mean SD
Age (years) 48 13 47 13
Postmortem interval (hours) 17.8 5.9 18.1 8.7
Freezer storage time (months) 121 44 121 46
Brain pH 6.8 0.2 6.6 0.4
RNA integrity number 8.3 0.6 8.2 0.7
a No significant differences between groups on any variable.
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diameter of 22 mm placed over each Nissl-stained nucleus.
Neurons were considered to be specifically labeled if the grain
density per neuron was more than five times that of background,
as determined by counting the grains in the same circle placed
over glial nuclei (2, 7, 9).

Antipsychotic-Exposed Monkeys

Young adult male long-tailed monkeys (Macaca fascicularis)
received oral doses of haloperidol, olanzapine, or placebo (N=6
monkeys per group) twice daily for 17–27 months (31). Triads (one
monkey from each of the three groups) were euthanized
together on separate days. RNA was isolated from prefrontal
cortical area 9, and qPCR was conducted for the same three
reference genes and Lhx6 (see Table S2 in the online data
supplement) with samples from all monkeys from a triad
processed together on the same plate. All animal studies
followed the NIH Guide for the Care and Use of Laboratory
Animals and were approved by the University of Pittsburgh
Institutional Animal Care and Use Committee.

Statistical Analysis

Analyses of covariance (ANCOVA) were first conducted to de-
termine whether mRNA levels were related to sex, age at death,
postmortem interval, brain pH, RIN, and storage time. We found
that relative somatostatin mRNA levels were related to age
(F=28.7, df=1, 76, p,0.001), as previously reported (9), and that
relative Lhx6 mRNA levels quantified by qPCR were related to
tissue storage time (F=7.2, df=1, 76, p=0.009) (see Figure S2 in the
online data supplement). No other postmortem factors were
found to affect mRNA levels, and none of these factors differed
between diagnostic groups (Table 1). Consequently, the ANCOVA
model we report includes mRNA level as the dependent variable,
diagnostic group as the main effect, subject pair as a blocking
factor, and, only for relative Lhx6 mRNA levels, storage time
as a covariate. Subject pairing may be considered an attempt to
account for the parallel processing of tissue samples from a pair
and to balance diagnostic groups for sex and age, and not a true
statistical paired design. Therefore, a second ANCOVA model

FIGURE 1. qPCR Determination of Relative mRNA Levels for GABA Neuron Markers in Schizophreniaa
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a mRNA levels for schizophrenia subjects relative to matched comparison subjects in a pair are indicated by open circles. Data points to the
right of the unity line indicate lower mRNA levels in the schizophrenia subject relative to the comparison subject and vice versa. Mean mRNA
levels in schizophrenia subjects were statistically significantly lower for parvalbumin (mean=0.030, SD=0.010), somatostatin (mean=0.084,
SD=0.042), and Lhx6 (mean=0.0098, SD=0.0021) and higher for calretinin (mean=0.027, SD=0.007) relative to comparison subjects
(parvalbumin: mean=0.037, SD=0.007; somatostatin: mean=0.115, SD=0.029; Lhx6: mean=0.0107, SD=0.0013; calretinin: mean=0.025,
SD=0.005). In contrast, Sox6 mRNA levels did not differ between schizophrenia subjects (mean=0.0111, SD=0.0018) and comparison subjects
(mean=0.0105, SD=0.0016).
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without subject pair as a blocking factor was also used, and
both models produced similar results. Subsequent analyses of
differences in mRNA levels between schizophrenia subjects
grouped by substance abuse and psychotropic medications
were conducted using the unpaired ANCOVA models with an
alpha of 0.05.

To determine whether a subset of schizophrenia subjects
express Lhx6, GAD67, parvalbumin, and somatostatin mRNAs in
a distinct pattern, a cluster analysis was conducted using the
levels of these four transcripts from each of the schizophrenia
and comparison subjects (N=84). To account for significant effects
of covariates (see Figure S2 in the online data supplement), we
first adjusted somatostatin mRNA levels for each subject to the
average age of all subjects at death (mean=47.6 years) and Lhx6
mRNA levels to the average storage time of all subjects’ samples

(mean=120.8 months). To account for varying scales among the

four mRNAs, standardized mRNA levels of storage time-adjusted

Lhx6, GAD67, parvalbumin, and age-adjusted somatostatin values

were computed over all subjects by subtracting the overall mean

and then dividing by the overall standard deviation. Standard-

ized mRNA levels were used to cluster all schizophrenia and

comparison subjects using the average linkage method (PROC

CLUSTER in SAS; SAS Institute, Cary, N.C.), and the clustering

result is presented in a tree dendrogram. Standardized mRNA

levels were compared among the groups arising from the clus-

tering using ANCOVA models as described earlier. Pearson chi-

square analysis was then used to determine whether a subset of

schizophrenia subjects was more likely than the remaining

schizophrenia subjects to have indicators of greater illness severity.

FIGURE 2. In Situ Hybridization Film Analysis for Lhx6 mRNA in Schizophrenia Subjectsa
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a In panel A, pseudocolored film autoradiographs of prefrontal cortical sections processed by in situ hybridization demonstrate lower Lhx6
mRNA levels in a schizophrenia subject relative to the matched comparison subject. The solid white line indicates the border between pia and
layer 1, and the dashed line indicates the border between layer 6 and white matter. In panel B, open circles indicate average Lhx6 mRNA levels
across gray matter of prefrontal cortical area 9 for schizophrenia subjects relative to matched comparison subjects in a pair. Data points to the
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mRNA levels were 13% lower in schizophrenia subjects relative to matched comparison subjects. In panel C, laminar analysis of prefrontal
cortical area 9 revealed that Lhx6 mRNA levels were lower by 14% in layer 2 (p=0.07), 15% in layer 3 (p,0.05), 7.4% in layer 4, 16% in layer 5
(p,0.05), and 18% in layer 6 (p,0.05) in schizophrenia subjects.
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FIGURE 3. Cellular Grain Counting Analysis of Lhx6 mRNA Expressiona
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a Panel A is a representative brightfield image of a 1203170 mm sampling frame placed in layer 3 in which Nissl-stained neuronal nuclei were
identified and sampled within inclusion and exclusion boundaries, indicated by broken and solid lines, respectively. Note that grain clusters
identified in the darkfield image in panel B are located over some of the lightly Nissl-stained neuronal nuclei in the brightfield image but not
over the darkly stained glial nuclei. Circles with a diameter of 22 mm were centered over all neuronal nuclei in every counting frame, and the
number of grains in each circle was counted in the corresponding darkfield image. Panels C–F show cellular Lhx6 mRNA measurements in
subjects with schizophrenia (red circles) and comparison subjects (blue circles) as expressed by labeled neurons/mm2 in layer 3 (panel C) and
layer 6 (panel D) and by grains per positive neuron in layer 3 (panel E) and layer 6 (panel F). Subjects in each pair are connected by black lines,
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For the antipsychotic-exposed monkey study, an analysis of
variance model with mRNA level as the dependent variable,
treatment group as the main effect, and triad as a blocking factor
was employed.

Results

Cortical Parvalbumin, Somatostatin, and
Calretinin mRNA Levels in Schizophrenia

We first sought to replicate prior reports of lower av-
erage parvalbumin and somatostatin mRNA levels (5,
7–10, 28) in the prefrontal cortex in schizophrenia using
qPCR. As expected, mean mRNA levels in schizophrenia
subjects were lower for parvalbumin (222%; F=17.5, df=1,
41, p,0.001) and somatostatin (236%; F=23.3, df=1, 41,
p,0.001) relative to comparison subjects (Figure 1). Some
of these subjects had previously been studied for parva-
lbumin and/or somatostatin mRNA levels, mostly by in
situ hybridization (see Table S1 in the online data supple-
ment). In the newly studied schizophrenia subjects alone,
we also found lower mRNA levels for parvalbumin (226%;
F=21.4, df=1, 22, p,0.001, N=23 pairs) and somatostatin
(230%; F=11.3, df=1, 18, p=0.004; N=19 pairs). However,
across the entire cohort, not all schizophrenia subjects
showed lower mRNA levels for parvalbumin (N=10) or
somatostatin (N=8) relative to their matched comparison
subjects (Figure 1).
Calretinin mRNA levels were significantly elevated by

9% in schizophrenia subjects (F=4.6, df=1, 41, p=0.037)
(Figure 1). Nineteen subject pairs were previously found to
have no difference in calretinin mRNA expression (see
Table S1 in the online data supplement) (7, 8, 28), and
qPCR analysis of calretinin mRNA levels in these subject
pairs similarly revealed no significant differences in schizo-
phrenia (+2%; F=0.31, df=1, 18, p=0.58). However, calretinin
mRNA levels were significantly higher in the new group of
23 schizophrenia subjects (+16%; F=6.7, df=1, 22, p=0.017).

Lhx6 and Sox6 mRNA Expression in Schizophrenia

qPCR analysis revealed that mean mRNA levels of Lhx6
(210%; F=6.1, df=1, 40, p=0.018), but not Sox6 (F=2.5, df=1,
41, p=0.12), were lower in schizophrenia relative to com-
parison subjects (Figure 1). Consistent with their colocal-
ization to the same interneuron subpopulations, Lhx6 and
Sox6 mRNA levels were strongly correlated in comparison
subjects (r=0.56, p,0.001; see Figure S3 in the online data
supplement), but not in schizophrenia subjects (r=0.06,
p=0.71), as expected for a disease effect onLhx6but not Sox6.
We next validated the finding of lower Lhx6 mRNA

levels in schizophrenia using in situ hybridization in a
limited number of subjects (i.e., the first 22 subject pairs

in Table S1 [in the online data supplement] that had
a sufficient number of available tissue sections). Mean
Lhx6 mRNA levels were similarly lower when quantified
by in situ hybridization (213%; F=4.9, df=1, 21, p=0.038)
(Figure 2A,B) or by qPCR (212%) in these schizophrenia
subjects. Furthermore, Lhx6 mRNA levels quantified by
in situ hybridization and by qPCR were highly correlated
in the same subjects (r=0.69, p,0.001; N=44 subjects).
We then conducted a laminar analysis of Lhx6 mRNA

levels to determine whether Lhx6 mRNA levels were lower
in the cortical layers where parvalbumin neurons (layers
3–4) (7) and/or somatostatin neurons (layers 2, 5, and 6)
(9) are most commonly found. Lhx6 mRNA levels were
lower by 14% in layer 2 (F=3.7, df=1, 21, p=0.07), 15% in
layer 3 (F=5.6, df=1, 21, p=0.028), 7.4% in layer 4 (F=0.94,
df=1, 21, p=0.34), 16% in layer 5 (F=5.8, df=1, 21, p=0.025),
and 18% in layer 6 (F=9.2, df=1, 21, p=0.005) (Figure 2C),
reaching statistical significance in layers 3, 5, 6 and almost
in layer 2.
We then used a grain counting analysis to determine

whether Lhx6 mRNA expression is lower in all Lhx6-
containing neurons and/or whether a subset of neurons is
particularly affected (Figure 3). In schizophrenia subjects,
the mean number of labeled neurons/mm2 was lower
in layer 3 (224%; F=10.6, df=1, 21, p=0.004) and layer 6
(227%; F=9.1, df=1, 21, p=0.007) relative to comparison
subjects. Furthermore, in schizophrenia subjects, mean
grain density per labeled neuron was also lower in layer 3
(217%; F=8.6, df=1, 21, p=0.008) and layer 6 (219%;
F=13.4, df=1, 21, p=0.001) relative to comparison subjects.
These data suggest that a subset of neurons fail to express
detectable levels of Lhx6 mRNA while the remaining neu-
rons express lower Lhx6 mRNA levels in schizophrenia.

Transcript Deficits in a Subset
of Schizophrenia Subjects

We next determined whether lower mRNA levels for
Lhx6, GAD67 (previously reported in this cohort [6]),
parvalbumin, and somatostatin mRNAs were predom-
inantly found in the same subset of schizophrenia
subjects. Cluster analysis using standardized mRNA
levels for Lhx6, GAD67, parvalbumin, and somatostatin
for all schizophrenia and comparison subjects (N=84)
yielded two distinct clusters. In one cluster (N=61
subjects), schizophrenia and comparison subjects were
generally intermixed. However, the other cluster (N=23
subjects) was composed almost entirely of schizophre-
nia subjects (20/23 subjects) and contained 48% of all
schizophrenia subjects (20/42) but only 7% of the com-
parison subjects (3/42) (Figure 4A). This “low-GABA-
marker” subset of schizophrenia subjects (N=20) had lower

and the mean values for each subject group are indicated by a horizontal line. In schizophrenia subjects, the mean number of labeled
neurons/mm2 was lower in layer 3 (mean=56.1, SD=14.8) and in layer 6 (mean=55.6, SD=22.7) relative to comparison subjects (mean=73.6,
SD=21.6 and mean=75.8, SD=26.8, respectively). Furthermore, in schizophrenia subjects, the mean grain density per labeled neuron was
also lower in layer 3 (mean=34.4, SD=9.1) and in layer 6 (mean=39.7, SD=9.2) relative to comparison subjects (mean=41.5, SD=9.9 and
mean=49.0, SD=11.0, respectively).
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levels of Lhx6 mRNA (F=29.1, df=2, 80, p,0.0001) rela-
tive to all other schizophrenia subjects (226%; t=27.06,
p,0.0001; N=22) and comparison subjects (222%; t=

26.55, p,0.0001; N=42); lower levels of GAD67 mRNA
(F=48.4, df=2, 81, p,0.0001) relative to other schizophrenia
subjects (233%; t=28.83, p,0.0001) and comparison

FIGURE 4. Transcript Deficits in a Subset of Schizophrenia Subjectsa
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a Panel A is a dendrogram illustrating a cluster analysis of standardized mRNA levels for storage time-adjusted Lhx6, GAD67, parvalbumin, and
age-adjusted somatostatin across all schizophrenia and comparison subjects. In one cluster (left side), schizophrenia (orange) and comparison
subjects (blue) were generally intermixed. However, the other cluster was composed almost entirely of schizophrenia subjects (red). The
subset of schizophrenia subjects in panel B had lower average mRNA levels for Lhx6, GAD67, parvalbumin, and somatostatin, but not
calretinin or Sox6, relative to all other schizophrenia subjects and to comparison subjects. Lhx6, GAD67, parvalbumin, and somatostatin
mRNA levels did not differ between the remaining schizophrenia subjects and the comparison subjects.

*p,0.0001.
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subjects (232%; t=28.75, p,0.0001); lower levels of parval-
buminmRNA (F=20.3, df=2, 81, p,0.0001) relative to other
schizophrenia subjects (230%; t=24.59, p,0.0001) and
comparison subjects (234%; t=26.28, p,0.0001); lower
levels of somatostatin mRNA (F=25.2, df=2, 80, p,0.0001)
relative to other schizophrenia subjects (239%; t=24.56,
p,0.0001) and comparison subjects (246%; t=27.06,
p,0.0001); and no differences in calretinin mRNA (F=1.8,
df=2, 81, p=0.17) or Sox6 mRNA (F=1.4, df=2, 81, p=0.26)
(Figure 4B). In contrast, post hoc analyses revealed that
mRNA levels for Lhx6, GAD67, parvalbumin, and somato-
statin did not differ between the schizophrenia subjects
not included in the low-GABA-marker cluster and all
comparison subjects (Lhx6: t=1.57, p=0.12; GAD67: t=1.34,
p=0.18; parvalbumin: t=21.1, p=0.27; and somatostatin:
t=21.85, p=0.07).
We next investigated whether the low-GABA-marker

subset of schizophrenia subjects was more likely than the
other schizophrenia subjects to have indicators of greater
illness severity. Available demographic measures from
psychological autopsy included factors predictive of ill-
ness severity such as male sex, diagnosis of schizophrenia
rather than schizoaffective disorder, first-degree relative
with schizophrenia, and earlier age at illness onset; and
factors associated with greater illness severity, including
suicide, no history of marriage, lower achieved socioeco-
nomic status, and not living independently at time of
death. However, no measure of greater illness severity was
more common in the low-GABA-marker subset of schizo-
phrenia subjects.

Effects of Substance Abuse and
Psychotropic Medications

Schizophrenia is associated with elevated rates of sub-
stance abuse and long-term treatment with psychotropic
medications. Consequently, we compared mRNA levels in
schizophrenia subjects with and without a comorbid
diagnosis of substance abuse or dependence or use of
antipsychotic, antidepressant, or benzodiazepine med-
ications at time of death.We foundno relationship between
any of these factors andmRNA levels for Lhx6 (see Figure S4
in the online data supplement), parvalbumin, or somato-
statin, and these factors were notmore common in the low-
GABA-marker subset of schizophrenia subjects.
We also evaluated prefrontal Lhx6 mRNA levels in

monkeys chronically exposed to haloperidol, olanzapine,
or placebo (see Figure S5 in the online data supplement).
(We previously reported no differences in mRNA levels for
parvalbumin, somatostatin, and GAD67 in antipsychotic-
exposedmonkeys [2, 7, 9]). Lhx6mRNA levels were slightly
higher in haloperidol-exposed (+9%) and olanzapine-
exposed monkeys (+6%) compared with placebo-exposed
monkeys, although this difference did not achieve statis-
tical significance (F=0.72, df=2, 10, p=0.51).

Discussion

In the prefrontal cortex of schizophrenia subjects, we
found deficits in mRNA levels for Lhx6, an ontogenetic
transcription factor selectively expressed by parvalbumin
and somatostatin neurons in humans (24). Furthermore,
our findings of lower mRNA levels for parvalbumin and
somatostatin are remarkably similar to reports in other
cohorts of schizophrenia subjects (5, 10). Interestingly, a
subset of schizophrenia subjects was identified by the pres-
ence of consistent deficits in Lhx6, GAD67, parvalbumin,
and somatostatin mRNAs. In contrast, not all GABA neuron
markers were lower in this subset of schizophrenia sub-
jects (e.g., calretinin), and not all mRNA species localized to
parvalbumin and somatostatin neurons were deficient (e.g.,
Sox6). Taken together, these data suggest that deficient Lhx6
mRNA expression may contribute to alterations in pheno-
typic markers in prefrontal parvalbumin and somatostatin
neurons in a subset of schizophrenia subjects.
Lhx6 is a transcription factor expressed by (future)

parvalbumin and somatostatin neurons as they migrate
from the medial ganglionic eminence to the cerebral cortex
(11–14, 19, 20) as early as 7 weeks’ gestation in humans
(16), and Lhx6 continues to be strongly expressed in this
cell type-specific manner in adult human cortex (24). The
pathogenetic consequences of low Lhx6 levels may de-
pend on the developmental stage at which Lhx6 deficits
first emerge in the disorder. For example, deficits in Lhx6
at the earliest gestational periods impair the migration of
cortical parvalbumin and somatostatin neurons (19, 20).
In schizophrenia, the densities of cortical Lhx6-positive
neurons and somatostatin-positive neurons (9) are lower
in the gray matter while the density of somatostatin-
positive neurons is higher in the interstitial white matter
(23); together, these findings are suggestive of arrested
migration of some somatostatin neurons. Alternatively,
a loss of Lhx6 that occurs after migration might interfere
with the development of the GABA-ergic phenotype. For
example, a lower density of cortical Lhx6-positive neurons
could mean that these neurons are still present but have
undetectable levels of Lhx6 mRNA. Consistent with this
interpretation, the density of prefrontal parvalbumin
mRNA-containing neurons was not altered in schizophre-
nia, but approximately 50% of these neurons lacked de-
tectable GAD67 mRNA (7). As a third alternative, deficits
in Lhx6 may appear in late adolescence/early adulthood
after cellular maturation has been completed. In this case,
the clustering of Lhx6, GAD67, parvalbumin, and somato-
statin mRNA deficits in a subset of schizophrenia subjects
may instead reflect the shared downstream consequences
of some other upstream pathogenetic event that selective-
ly affects parvalbumin and somatostatin neurons. However,
our failure to detect a change in Sox6 mRNA, which is
selectively expressed by cortical parvalbumin and somato-
statin neurons (21, 22), is inconsistentwith a general disease
effect that affects all transcripts localized to these neurons.
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Finally, the absence of an effect of age on Lhx6 mRNA
levels in schizophrenia suggests that lower Lhx6 mRNA
levels are not attributable to a prolonged neurodegener-
ative process. Since our study was designed to detect
alterations present in adulthood, we cannot directly
determine the developmental stage at which deficits in
Lhx6 mRNA levels, or any other GABA neuron markers,
occur in the disorder. Interestingly, though, cognitive
developmental delays have been reported in the premor-
bid stages of schizophrenia (32), even before age 1 (33).
Thus, these lines of evidence suggest that the pattern of
molecular abnormalities in prefrontal GABA neurons seen
in a subset of schizophrenia subjects may reflect the long-
lasting consequence of disturbances in the ontogeny of
parvalbumin and somatostatin neurons that might have
begun early in prenatal life.

The finding that deficits in certainGABA neuron-related
mRNAs cluster together in a subset of schizophrenia
subjects may help inform novel diagnostic strategies and
individualized treatment approaches in schizophrenia.
This subset of schizophrenia subjects with clear GABA
neuron-related deficits may not necessarily have a more
severe form of the illness, as suggested by the lack of
difference in markers of illness severity from other
schizophrenia subjects. However, one may predict that
schizophrenia-related deficits in gamma band oscillations
(34, 35), which are subserved by cortical parvalbumin
neurons (36) and are important for prefrontal cortex-related
cognitive processes (37), may be greater in the low-GABA-
marker subset of schizophrenia subjects (38). Further-
more, approaches to clinically identifying schizophrenia
patients with GABA neuron-related deficits might include
positron emission tomography studies of shifts in extra-
cellular GABA levels (39) or magnetic resonance spectros-
copy (MRS) studies to quantify total cortical GABA levels.
Interestingly, the evidence for two subsets of schizophre-
nia subjects, with or without robustly lower cortical GAD67
mRNA levels (Figure 4), suggests that inconsistencies in
reports of cortical GABA levels by MRS (40–42) may reflect
differences in the sampling of schizophrenia subjects
(i.e., different studies may include a variable proportion of
schizophrenia subjects with and without deficits in GABA
neuron-related mRNAs). In addition, allelic variants or
altered histone methylation of the promoter regions of
GABA neuron-related genes, such as GAD1 (4, 43), that
affect gene expression and have been associated with
an increased risk for schizophrenia may be even more
common in the low-GABA-marker subset of schizophrenia
subjects. Finally, personalized medicine approaches, such
as using GABA agents (44, 45) in schizophrenia patients
with identified cortical GABA deficits, may increase the
likelihood of a beneficial effect on cognitive functioning.
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