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Objective: The Consortium on the Genet-
ics of Schizophrenia has undertaken a large
multisite study to characterize 12 neuro-
physiological and neurocognitive endo-
phenotypic measures as a step toward
understanding the complex genetic basis
of schizophrenia. The authors previously
demonstrated the heritability of these
endophenotypes; in the present study,
genetic linkage was evaluated.

Method: Each family consisted of a pro-
band with schizophrenia, at least one
unaffected sibling, and both parents. A
total of 1,286 participants from 296 fam-
ilies were genotyped in two phases, and

1,004 individuals were also assessed for
the endophenotypes. Linkage analyses of
the 6,055 single-nucleotide polymor-
phisms that were successfully assayed,
5,760 of which were common to both
phases, were conducted using both vari-
ance components and pedigree-wide re-
gression methods.

Results: Linkage analyses of the 12 endo-
phenotypes collectively identified one re-
gion meeting genome-wide significance
criteria, with a LOD (log of odds) score of
4.0 on chromosome 3p14 for the antisac-
cade task, and another region on 1p36
nearly meeting genome-wide significance,
with a LOD score of 3.5 for emotion
recognition. Chromosomal regions meet-
ing genome-wide suggestive criteria with
LOD scores.2.2 were identified for spatial
processing (2p25 and 16q23), sensorimo-
tor dexterity (2q24 and 2q32), prepulse
inhibition (5p15), the California Verbal
Learning Test (8q24), the degraded-
stimulus Continuous Performance Test
(10q26), face memory (10q26 and 12p12),
and the Letter-Number Span (14q23).

Conclusions: Twelve regions meeting
genome-wide significant and suggestive
criteria for previously identified heritable,
schizophrenia-related endophenotypes were
observed, and several genes of potential
neurobiological interest were identified.
Replication and further genomic studies
are needed to assess the biological signif-
icance of these results.

(Am J Psychiatry 2013; 170:521–532)

Schizophrenia is a severe psychiatric disorder with
a lifetime prevalence of approximately 1% (1). Like other
common, complex disorders, schizophrenia is a multifac-
torial polygenic disorder that reflects the combined
influence of both genetic and nongenetic factors (1, 2).
Epidemiological studies indicate a heritability of up to
80% for schizophrenia, reflecting a strong genetic influence
(3). Several candidate genes have been proposed but as yet
remain unconfirmed as harboring causal mutations (4, 5).
Linkage studies of schizophrenia have implicated many
chromosomal regions (6), yet the identification of causative

genes within the linked regions has proven difficult. This
difficulty in translating linkage findings to causal genesmay
be due to several factors, including the modest nature of
the linkage signals and the broad genetic regions they
encompass, genetic heterogeneity, polygenic inheritance,
and environmental influences associated with schizophre-
nia. Additionally, schizophrenia is a highly heterogeneous
disorder, with patients exhibiting a broad range of deficits
and symptom severity subsumed under a single categorical
diagnosis, labeled by Bleuler as the “group of schizophre-
nias” (7).
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One way to dissect the underlying genetics and neural
circuit abnormalities of a complex disorder like schizo-
phrenia is through the use of endophenotypes known
or likely to represent the subclinical pathology of the
disease. Endophenotypes are discrete, genetically deter-
mined disease-related phenotypes with demonstrated
reliability, stability, and heritability (8–10). An advantage
of using endophenotypes is that they relate to specific
neurobiological functions and substrates associated
with the disease, which may make them more useful for
gene identification than the more subjective diagnosis of
schizophrenia.

Investigations of schizophrenia and other common dis-
orders have recently moved toward genome-wide associ-
ation studies (GWAS), which have greater power to detect
weak associations to common variants. However, a con-
siderable proportion of the observed heritability is not
detectable in these large studies of unrelated patients and
comparison subjects (11, 12). One likely source of this
“missing heritability” is allelic heterogeneity, which may
substantially reduce the power of GWAS to detect caus-
ative genes because the overall genetic effect is divided
among multiple variants, some of which may be rare
and not well captured by common tag single-nucleotide
polymorphisms (SNPs). Linkage, however, can detect the
aggregate effects of multiple rare and common variants
within a susceptibility gene or region, even with different
mutations conferring risk in different families. Linkage

data may also be used to weight evidence for association
and potentially increase the power of GWAS (13). Thus,
linkage studies and family-based samples continue to be
relevant in the age of rapidly advancing technologies.
TheConsortiumon theGenetics of Schizophrenia (COGS)

focuses on investigating endophenotypes as a strategy for
dissecting the genetic architecture of schizophrenia and
filling in the “gene to phene” gap (8–10). Twelve heritable
neurophysiological and neurocognitive endophenotypes
that are characteristically impaired in schizophrenia pa-
tients were chosen for the COGS study: prepulse inhibition
of the startle response (14–16), P50 event-related potential
suppression (17–19), the antisaccade task for eyemovements
(20, 21), the Continuous Performance Test (degraded-
stimulus version) (22, 23), the California Verbal Learning
Test, 2nd edition (24, 25), the Letter-Number Span (26–28),
and six measures from the University of Pennsylvania
Computerized Neurocognitive Battery (abstraction and
mental flexibility [29, 30], face memory [29, 30], spatial
memory [29, 30], spatial processing [29, 30], sensorimotor
dexterity [29, 30], and emotion recognition [29, 30]).
Deficits in all endophenotypes have been demonstrated
not only in patients with schizophrenia but also in their
clinically unaffected relatives, suggesting that these deficits
reflect part of the heritable risk for the illness. Complete
reviews of each endophenotype in the COGS study, includ-
ing the rationale for selection and data regarding stability,
reliability, and heritability, have been reported elsewhere

TABLE 1. Description of 12 Neurophysiological and Neurocognitive Endophenotypes

Endophenotype Abbreviation Description Measure

Prepulse inhibition (14–16) PPI Inhibition of the startle reflex in response to a
weak prestimulus with a 60-ms interval

Percent inhibition

P50 suppression (17–19) P50 Suppression of the P50 event-related potential
in response to a conditioning stimulus

Difference between the test
and conditioning amplitudes

Antisaccade task (20, 21) AS Test of oculomotor inhibition in which subjects
respond to a peripheral target by looking in
the opposite direction with equal magnitude

Ratio of correct antisaccades
to total saccades

Degraded-stimulus Continuous
Performance Test (22, 23)

DS-CPT Measure of sustained attention involving target
stimulus identification

Correct target detections and
incorrect responses to
nontargets (d:)

California Verbal Learning Test,
2nd edition (24, 25)

CVLT-II A verbal memory task involving recall of 16
verbally presented items

Total recall score summed
over five trials

Letter-Number Span (26–28) LNS A working memory task involving recall of
intermixed numbers and letters

Correct reordering

Abstraction and mental
flexibility (29, 30)

ABF The subject is presented with four objects and
must choose the one that does not belong

Efficiency scorea

Face memory (29, 30) FMEM Recognition of 20 target faces among distracter
faces

Efficiency scorea

Spatial memory (29, 30) SMEM Uses Euclidean shapes as a recognition paradigm
identical to face memory

Efficiency scorea

Spatial processing (29, 30) SPA Two lines are presented at an angle, and
corresponding lines must be identified on
a simultaneously presented array

Efficiency scorea

Sensorimotor dexterity (29, 30) S-M The mouse is used to quickly click on a target
that gets increasingly smaller

Efficiency scorea

Emotion recognition (29, 30) EMO The identification of a variety of facial expressions
of emotion

Efficiency scorea

a A modified version of the University of Pennsylvania Computerized Neurocognitive Battery was used to evaluate the “efficiency” of the
endophenotype, calculated as accuracy/log10 (speed) and expressed as standard equivalents (Z score).
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(31–33). We previously reported evidence of significant
heritability for these 12 endophenotypes in a subset of 183
COGS families and have demonstrated association with
several carefully chosen candidate genes in 130 of these
families (34, 35). In thepresent study,we report the results of
a genome-wide SNP linkage scan for these endophenotypes
in the complete COGS sample of 296 families.

Method

Participants

Families were ascertained at seven sites through the identifi-
cation of probands who met DSM-IV-TR criteria for schizophre-
nia as determined by administration of the Diagnostic Interview
for Genetic Studies and the Family Interview for Genetic Studies
(36–38). Each family consisted of a proband with schizophrenia,
at least one unaffected sibling, and both parents, with blood
samples required for all participants and endophenotypes re-
quired for each proband and unaffected sibling. Unlike studies
that focus exclusively on affected sibling pairs or large families
with multiple affected members, this type of ascertainment
strategy provides greater potential for phenotypic contrasts
between and among siblings. Additional affected and unaffected
siblings were included whenever possible, and families missing
one or both parents were accepted if one or two additional siblings
were available. Blood was collected at the time of assessment and
sent to the Rutgers University Cell and DNA Repository for cell line
maintenance and DNA isolation. The ascertainment and screen-
ing procedures and inclusion and exclusion criteria have been
discussed in detail elsewhere (31). After participants received
a detailed description of the study procedure, they provided
written informed consent per local institutional review board
protocols.

Phenotyped individuals ranged in age from 18 to 65 years old
and received urine toxicology screening for drugs of abuse prior
to assessment (negative screens were required). The three
neurophysiological and nine neurocognitive endophenotypes
are summarized in Table 1; a more detailed description of the
assessment procedure for each endophenotype is available
elsewhere (31–33).

The 296 families comprised 1,364 participants, with an average
family size of 4.6 members (range: 4–14 members). The majority
of the families (62%) consisted of a single sibling pair discordant
for schizophrenia, with sibships of three accounting for 26% of
families and larger sibships accounting for 12%. A total of 1,286
individuals had DNA available for genotyping, and of these, 1,004
were assessed for the 12 endophenotypes. Of the 710 sibling pairs
in the sample, 16 were concordant for schizophrenia, 464 were
discordant, and 230 were unaffected with an average of 523
informative pairs for each endophenotype (Table 2). Of the 1,526
parent-offspring pairs in the sample, an average of 428 pairs were
informative for each endophenotype (Table 2). We note that
there were variable rates of data loss across the endophenotypes
due to variances in the completion rate by participants, the difficulty
of measurement, and the quality-control processes required.

Genotyping and Data Cleaning

Genotyping was performed in two phases by the Center for
Inherited Disease Research. Initial genotyping with a micro-
satellite panel allowed for the elimination of errors due to sample
handling or nonpaternity. The first phase of genotyping included
198 families (N=891) and was performed using the Illumina In-
finium HumanLinkage-12 panel (Illumina, San Diego) containing
6,090 SNP markers across the genome, of which 6,001 SNPs were
successfully assayed with a reproducibility rate of 99.997% as de-
termined from 60 blind duplicates. The second phase of genotyping
included 98 families (N=395) and was performed using the Illumina
InfiniumHumanLinkage-24 panel containing 5,913 SNPs across the
genome, 5,724 of which were successfully assayed with a reproduc-
ibility rate of 100.000% as determined from 36 blind duplicates.
All SNPs were evaluated by the Center for Inherited Disease Re-
search for clustering, call rate, replicate errors, and intensity using
Illumina GenomeStudio (Illumina, San Diego) and were excluded
as necessary based on internal quality-control criteria. Partic-
ipants were also excluded for poor genotyping performance
across all SNPs (N=11). Of the successfully genotyped SNPs,
5,670 were common between the two platforms, with 331 SNPs
unique to the HumanLinkage-12 panel and 54 SNPs unique to
the HumanLinkage-24 panel.

Genotypes causing Mendelian inconsistencies were identified
using PedCheck (39) and removed from all individuals in the
family for a sporadic error rate estimation of 0.01%. MERLIN
(multipoint engine for rapid likelihood inference) (40) was used

TABLE 2. Heritability Estimates Observed for the 12 Endophenotypes in the 296 Families

Endophenotypea N

Pairsb
Residual

Heritability (h2r)
c SE p

Covariate (p)

VariancedSibling Parent-Offspring Age Sex Site

PPI 701 428 308 0.29 0.09 0.0004 n.s. ,0.0001 n.s. 0.04
P50 568 248 197 0.20 0.10 0.019 n.s. n.s. n.s.
AS 825 516 391 0.36 0.07 ,0.0001 ,0.0001 n.s. n.s. 0.03
DS-CPT 881 555 449 0.34 0.06 ,0.0001 ,0.0001 n.s. 0.005 0.04
CVLT-II 949 634 500 0.26 0.06 ,0.0001 ,0.0001 ,0.0001 0.005 0.15
LNS 951 638 492 0.34 0.06 ,0.0001 ,0.0001 n.s. n.s. 0.07
ABF 888 533 473 0.25 0.06 0.0001 ,0.0001 n.s. n.s. 0.17
FMEM 912 569 490 0.30 0.06 ,0.0001 ,0.0001 0.010 n.s. 0.12
SMEM 900 557 479 0.34 0.06 ,0.0001 ,0.0001 n.s. n.s. 0.10
SPA 837 486 421 0.52 0.06 ,0.0001 ,0.0001 ,0.0001 n.s. 0.22
S-M 898 561 463 0.38 0.06 ,0.0001 ,0.0001 n.s. n.s. 0.21
EMO 896 556 475 0.16 0.05 0.002 ,0.0001 0.0001 n.s. 0.17
a The 12 endophenotypes are described in Table 1.
b Data indicate the number of informative pairs.
c Data represent the residual heritability after adjustment for significant covariates.
d The proportion of the trait variance explained by all significant covariates.
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to identify and remove an additional 64 unlikely genotypes. All
SNPs were ordered on the physical map according to Genome
Build 36 (National Center for Biotechnology Information,
Bethesda, Md.), and the deCODE genetic map (deCODE Gene-
tics, Reykjavik, Iceland) was used to estimate genetic map dis-
tances (41). The final SNPs had an average physical spacing of
512 kb and an average genetic spacing of 0.65 cM.

Statistical Analyses

Heritability analyses were conducted using SOLAR 4.3.1 (se-
quential oligogenic linkage analysis routines) to evaluate poten-
tial covariates for linkage (42). The revised heritability estimates
for the 296 families, as listed in Table 2, approximate those we
previously reported in 183 COGS families, with all but emotion
recognition within one standard error of the previous estimate
(34). Bivariate environmental (rE) and genetic (rG) correlation
estimates were also computed (see Table S1 in the data sup-
plement that accompanies the online edition of this article) to
verify our previous findings and to inform the multivariate
linkage analyses (34, 43). Details of these analyses are summa-
rized in the online data supplement.

PEDSTATS (44) was used to identify 43 markers that deviated
from Hardy-Weinberg equilibrium in the parents (p#0.001).
Since departures from equilibrium can occur for numerous rea-
sons, including association between marker alleles and disease
susceptibility, we report only results that included all markers,
noting that the exclusion of these markers for regions with LOD
(log of odds ratio) scores .2.2 had a negligible effect on the
results.

The variance component method implemented in SOLAR was
used as our primary method for the quantitative trait linkage
analyses. Two-point and multipoint LOD scores were calculated
for each endophenotype using normalized trait values, a correc-
tion for ascertainment bias, and covariate adjustment as
appropriate (42, 45). Simulation analyses were performed using
10,000 replicates to permit the estimation of empirical LOD
scores for each endophenotype individually (46). For compari-
son, the model-free pedigree-wide regression method imple-
mented in MERLIN was used to compute multipoint LOD scores
for each autosome (47). This method has been shown to be
robust regarding issues involving incomplete marker informa-
tivity and is appropriate for selected samples, allowing for the
specification of population-based parameters (47–49). Variance
component models in MERLIN were used for multipoint analysis
of the X chromosome data, since neither the regression algo-
rithm nor SOLAR permits multipoint analyses of X chromosome
data. For all analyses, multipoint identical-by-descent matrices
were generated using the respective program at a 1-cM resolu-
tion, which is slightly larger than the average spacing between
SNPs. Since linkage analysis of tightly linked loci can inflate LOD
scores, we required that the r2 value between markers be less
than 0.05. For regions in which coincident linkage signals were
observed for multiple, genetically correlated endophenotypes,
multivariate linkage analyses were conducted using SOLAR. This
sample has 80% power to detect a locus explaining 35%–40% of
the trait variance across endophenotypes (excluding P50 sup-
pression) with a LOD score of 2.2.

Results

We performed a genome-wide linkage scan for each
endophenotype using variance components methods as
the primary analysis. Regression-based methods were
then used to confirm and extend the results. As shown in
Figures 1 and 2 and summarized in Table 3, these analyses

have collectively identified several linkage regionsmeeting
at least suggestive evidence of linkage across the 12
endophenotypes, according to the criteria established by
Lander and Kruglyak (50). A summary of all multipoint
LOD scores .1.0 with the corresponding empirical p val-
ues is provided in Table S2 in the online data supplement,
and a complete listing of all multipoint LOD scores is
available in Table S3 in the data supplement.
Significant evidence for linkage (LOD score .3.6) was

observed for the antisaccade task on chromosome 3p14,
with a variance components LOD score of 4.0. While the
regression LOD score for this region only reached sug-
gestive evidence for linkage, with a peak LOD score of 2.4,
simulation analyses indicated an empirical p value
,0.0001. No other endophenotype displayed linkage to
this region with a LOD score .1.0 (see Table S2 in the
online data supplement). Several neuronally expressed
genes are located beneath this linkage peak, including
ataxin 7 (ATXN7), which encodes a protein involved in
chromatin remodeling and plays a role in transcriptional
regulation. A polyglutamine repeat expansion in this gene
is implicated in spinocerebellar ataxia type 7, which also
presentswith retinal degeneration and visual loss, dementia,
hypoacusia, severe hypotonia, and auditory hallucinations
(51). The ATXN1 gene on chromosome 6p22, which causes
spinocerebellar ataxia type 1 through a similar mechanism,
has also been investigated as a candidate gene with asso-
ciations to schizophrenia (52, 53).
Another region nearly reaching genome-wide signifi-

cance under the variance components model was chro-
mosome 1p36, which produced a LOD score of 3.5 for
emotion recognition. The regression LOD score for this
region only reached 2.5, yet simulation analyses indicated
an empirical p value ,0.0001. The Letter-Number Span
also revealed modest evidence for linkage to this region,
with a LOD score of 1.6 (see Table S2 in the online data
supplement). Several genes are located beneath this peak,
including the serotonin receptor 6 gene (HTR6), which
functions in the modulation of cholinergic and dopami-
nergic neurotransmission, plays a role in spatial learning
and memory, and has a high affinity for several conven-
tional and atypical antipsychotics (54).
Suggestive evidence for linkage (LOD score .2.2) under

the variance components model was observed for pre-
pulse inhibition on chromosome 5p15, with a peak LOD
score of 2.5 (regression LOD score=2.4); for face memory
on chromosome 10q26, with a peak LOD score of 2.3
(regression LOD score=2.4); and for spatial processing on
chromosome 16q23, with a peak LOD score of 2.6 (re-
gression LOD score=2.5). The regression method identified
several additional regions meeting suggestive evidence
for linkage,most of which displayed at least some evidence
for linkage, with LOD scores .1.0 in the variance compo-
nents analysis. These regions included 2p25 (spatial pro-
cessing), 2q24 and 2q32 (sensorimotor dexterity), 8q24
(California Verbal Learning Test), 10q26 (degraded-stimulus
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Continuous Performance Test), 12p12 (face memory), and
14q23 (Letter-Number Span).
Several genes of potential interest were identified

beneath the suggestive peaks. The gene encoding the zinc
finger protein 804A (ZNF804A) lies beneath the linkage
peak for sensorimotor dexterity on chromosome 2q32.
This gene has shown strong evidence for association with
schizophrenia in several large GWAS (55–57). Although the

region on chromosome 5p15 with linkage to prepulse
inhibition is very gene-dense, one gene of particular note,
the dopamine transporter gene (SLC6A3/DAT), lies be-
neath the peak. This gene has shown evidence of as-
sociation with prepulse inhibition and startle habituation
(58), schizophrenia (59), and several of our neurocognitive
endophenotypes (35). Prepulse-inhibition deficits have
also been reported in DAT knockout mice (60). Finally,

FIGURE 1. Results of the Genome-Wide Single-Nucleotide Polymorphism Linkage Scan in the 296 Families for Each of the Six
Primary Neurophysiological and Neurocognitive Endophenotypesa
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a Results for the following analyses are shown: the variance components multipoint (red), the pedigree-wide regression multipoint (blue), and
the variance components two-point (gray). Log of odds (LOD) scores are indicated on the y-axis, along with the name of the corresponding
endophenotype. Chromosomes are aligned along the x-axis end to end with the p-terminus on the left and locations indicated at the top of
the graph. Dashed horizontal lines indicate genome-wide significant and suggestive LOD scores of 3.6 and 2.2, respectively. LNS=Letter-
Number Span; CVLT-II=California Verbal Learning Test, 2nd edition; DS-CPT=degraded-stimulus Continuous Performance Test;
AS=antisaccade task; P50=P50 suppression; PPI=prepulse inhibition.
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the glutamate (N-methyl-d-aspartic acid) receptor 2B gene
(GRIN2B) lies beneath the linkage peak for facememory on
chromosome 12p12. Several studies have found evidence
for association of GRIN2B with schizophrenia (58, 61–63),
and we previously reported associations with several of our
neurocognitive endophenotypes (35, 58).

We also identified many regions of coincident linkage
in which at least two endophenotypes produced modest

evidence for linkage (LOD score.1.0), including the 1p36,
10q26, and 12p12–13 regions described above (see Table
S2 in the online data supplement). Two regions in par-
ticular on 10q26 and 17p13 revealed linkage to multiple
endophenotypes, some of which were genetically correlated
(see Table S1 in the data supplement). Amultivariate linkage
analysis combining the antisaccade task, degraded-stimulus
Continuous Performance Test, face memory, and spatial

FIGURE 2. Results of the Genome-Wide Single-Nucleotide Polymorphism Linkage Scan in the 296 Families for Each of the Six
Endophenotypes From the University of Pennsylvania Computerized Neurocognitive Batterya
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memory produced a LOD score of 2.1 for 10q26. However,
face memory alone produced suggestive LOD scores of 2.2
and 2.4 with the two linkage methods, and the degraded-
stimulus Continuous Performance Test also produced a
suggestive LOD score of 2.4 with the regression method. It
is thus likely that these linkages represent distinct sig-
nals despite their close proximity. A similar analysis was
conducted for chromosome 17, combining the degraded-
stimulus Continuous Performance Test, face memory,
spatial memory, and sensorimotor dexterity. While in-
dividual endophenotypes produced LOD scores of 1.3–1.8
for 17p13 under the variance components model, a sugges-
tive LOD score of 2.2 was observed through their joint
analysis, which may indicate the presence of a gene in this
region that is involved in some aspect of neurocognition or
one that generally contributes to schizophrenia susceptibil-
ity. Notably, the YWHAE gene lies below this peak and
encodes 14–3-3epsilon, a member of a highly conserved
family of proteins involved in a wide range of signaling
pathways. YWHAE is a binding partner of DISC1 and has
been proposed as a susceptibility gene for schizophrenia
(64, 65).

Discussion

Investigations of endophenotypes that reflect aspects
of the brain pathology involved in schizophrenia may
facilitate the identification of genes contributing to
schizophrenia susceptibility (8–10). Genome-wide linkage
analyses of 12 heritable neurocognitive and neurophysi-
ological endophenotypes collectively identified 12 regions
displaying genome-wide significant or suggestive evidence

for linkage using two complementary linkage analysis
methods. Several genes of potential interest are located
beneath these linkage peaks, including HTR6 on chro-
mosome 1p36 (emotion recognition), ZNF804A on 2q32
(sensorimotor dexterity), ATXN7 on 3p14 (the antisaccade
task),DAT on 5p15 (prepulse inhibition),GRIN2B on 12p12
(face memory), and YWHAE on 17p13 (multivariate cog-
nitive phenotype).
We did not find evidence for linkage of the COGS

endophenotypes to some of the prominent linkage regions
for schizophrenia, such as 1q21–22, 4q31, 5q22–31,
6p22–24, 8p21–22, 9q21–22, and 10p11–15. However, we
did find at least modest evidence to support linkage with
LOD scores .1 observed for at least one endophenotype
to other linkage regions identified for schizophrenia (6),
such as 1q32–41, 5p13–14, 6q21–22, 13q14–32, 15q13–15,
22q11–13, and Xp11 (see Table S3 in the online data
supplement). A SNP linkage study of schizophrenia, con-
ducted by Holmans et al. (66), identified additional sug-
gestive linkage regions on chromosomes 8q24, 9q34, and
12q24, while another study found suggestive evidence for
linkage of schizophrenia covaried for positive symptom
dimensions on chromosomes 2q32, 10q26, and 20q12 (67).
In our study, we also observed suggestive evidence for
linkage to 2q32 (sensorimotor dexterity), 8q24 (the Cal-
ifornia Verbal Learning Test), and 10q26 (the degraded-
stimulus Continuous Performance Test and face memory).
Few studies investigating schizophrenia endopheno-

types through genome-wide analyses have been published
to date. One study of several measures of neurocognition
in schizophrenia identified a linkage peak that reached
genome-wide significance on chromosome 12q24 for

TABLE 3. Summary of All Chromosomal Regions With Log of Odds (LOD) Scores Reaching at Least Suggestive Evidence for
Linkage

Chromosome Endophenotypea

SOLARb MERLINd

Nearby Genese
Location
(cM)

Peak
LOD

Interval
(cM/Mb)c

Location
(cM)

Peak
LOD

Interval
(cM/Mb)c

1p36 EMO 38 3.5 31–48/17.3–29.5 37 2.5 28–43 / 15.6–23.7 PAX7, UBR4,
ALDH4A1, NBL1,
HTR6, EPHA8, EPHB2

2p25 SPA 17 2.5 14–20 / 6.0–8.1 none
2q24 S-M 164 1.4 168 2.8 167–171 / 158.6–166.6 GALNT13, BAZ2B
2q32 S-M 188 1.5 190 2.7 187–192/182.9–192.1 ZNF804A
3p14 AS 87 4.0 83–95/61.0–70.5 88 2.4 83–94/61.0–69.7 SYNPR, ATXN7,

PRICKLE2, MITF
5p15 PPI 0.6 2.5 0–12/0.7–4.6 0.6 2.4 0–10/0.7–3.8 SLC6A3 (DAT)
8q24 CVLT-II 153 1.1 136 2.4 133–140/127.8–131.4 POU5F1, MYC
10q26 DS-CPT 153 1.9 155 2.4 147–162/123.5–130.0 FANK1, ADAM12
10q26 FMEM 168 2.3 159–179/129.5–134.9 171 2.4 161–179/130.0–134.9 MGMT, TCERG1L
12p12 FMEM 34 2.8 30–39/12.9–20.2 GRIN2B, LMO3
14q23 LNS 65 2.0 61 2.5 60–67/58.9–67.9 SYNE2, GPHN, ESR2
16q23 SPA 102 2.6 96–112/77.4–82.0 105 2.5 98–111/77.7–81.9 WWOX, GAN, PLCG2
a The 12 endophenotypes are described in Table 1.
b Data represent analyses conducted using SOLAR 4.3.1 (sequential oligogenic linkage analysis routines).
c Genetic and physical boundaries of LOD scores within one unit of the maximum (1-LOD interval); cM=centimorgan, Mb=megabase pairs.
d Data represent analyses conducted using MERLIN (multipoint engine for rapid likelihood inference).
e Genes within the 1-LOD interval prioritized by proximity to single-nucleotide polymorphisms with two-point LOD scores .1.5.
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undegraded Continuous Performance Test hit rate (68).
We identified modest evidence for linkage to this region
for one of our neurocognitive endophenotypes (emo-
tion recognition). In another study of multigenerational
schizophrenia families with theoretically greater genetic
loading for both schizophrenia and associated endophe-
notype deficits, significant evidence of linkage was ob-
served for schizophrenia on 19q13 and abstraction and
mental flexibility on 5q15 (69).Modest evidence for linkage
was observed in our sample for neurocognitive endophe-
notypes in these regions, including abstraction andmental
flexibility on 5q15.

We also identified several regions of overlapping linkage
signals of two or more endophenotypes, some of which
have featured prominently in previous linkage studies of
schizophrenia, such as 6q21–22, 15q13–15, and 22q11–13
(70–77). The 15q13–15 region was identified as a suscepti-
bility locus for schizophrenia through a linkage study of
P50 suppression and contains the alpha-7 nicotinic
acetylcholine receptor gene (CHRNA7), a candidate gene
for schizophrenia (18). Deletions within the 22q11 region
have been associated with schizophrenia, and two
prominent candidate genes, catechol-O-methyltransfer-
ase (COMT) and proline dehydrogenase (PRODH), are
located in this region (78). A meta-analysis combining the
results of several linkage studies confirmed this region as
a valid linkage region for both schizophrenia and bipolar
disorder that likely contains one ormore susceptibility genes
(79), and evidence of linkage for a composite inhibitory
phenotype combining P50 suppression and antisaccadewas
observed for 22q11–12 (80). Finally, recent studies suggest
that rare deletions in the 15q13 and 22q11 regions pre-
dispose to schizophrenia (81–84). Thus, these regions may
warrant further investigation in other samples.

Recent GWAS have identified several risk genes associ-
ated with schizophrenia at genome-wide significance
levels in very large samples. These include microRNA 137
(MIR137) on chromosome 1p21, ZNF804A on 2q32, the
major histocompatibility complex region on 6p21–22, CUB
and sushi multiple domains 1 (CSMD1) on 8p23, the
neurogranin gene (NRGN) on 11q24, and transcription
factor 4 (TCF4) on 18q21 (55–57, 85, 86). The voltage-
dependent l-type calcium channel alpha-1C (CACNA1C)
on chromosome 12p13 also reached genome-wide signif-
icance in a joint analysis with bipolar disorder (85). Other
than the aforementioned suggestive evidence of linkage
for sensorimotor dexterity to the 2q32 region containing
ZNF804A,we observed onlymodest evidence of linkage for
the 8p23 (the California Verbal Learning Test), 12p13–12
(abstraction and mental flexibility, sensorimotor dexter-
ity), and 18q21 (P50 suppression) regions.

One might expect that the endophenotypes with the
highest heritabilities would produce the strongest genetic
signals, yet, as our results demonstrate, this is not always
the case. In our study, antisaccade had one of the highest
heritabilities, at 36%, and produced the only genome-wide

significant linkage signal, whereas spatial memory did not
produce a linkage signal meeting genome-wide suggestive
criteria, despite having a comparable heritability of 34%.
The second strongest linkage signal was observed for
emotion recognition, the endophenotype with the lowest
heritability in this study at 16%, although we do note that
emotion recognition demonstrated a much higher herita-
bility of 32% in our previous analysis of 183 families (34).
Although it is possible that the genetic signal from the
original families is strong enough to influence the overall
linkage signal for emotion recognition, these results may
simply illustrate that heritability estimates are not perfect
predictors of the potential “mapability” of the underlying
genetic variants. An endophenotype with a relatively low
but significant heritability may exhibit large effects of a
small number of genes, which would facilitate map-
ping. Alternatively, an endophenotype may be highly
heritable but also highly polygenic, similar to schizophre-
nia itself, which would significantly complicate gene
mapping by producing low-level signals across amultitude
of genomic regions. For example, a recent study evaluating
the variance in liability explained by the identified variants
for 10 complex diseases, including schizophrenia, found
that each associated SNP explained a median variance of
only 0.25% (87). While endophenotypes provide reliable
measures of specific neurophysiological and neurocog-
nitive processes that are deficient in schizophrenia, they
may not exhibit simpler genetic architectures (88).
There are several limitations or caveats applicable to this

study. First, the COGS family ascertainment strategy
focused on the recruitment of siblings discordant for
schizophrenia to increase variation in the endophenotypic
values. As a result, only 16 affected sibling pairs and eight
affected parents exist in the sample, too few to reliably
assess linkage to schizophrenia or determine whether the
genomic regions identified by the endophenotypes have
an effect on schizophrenia susceptibility. We were also
unable to assess the degree of genetic correlation between
the endophenotypes and schizophrenia. Additionally, this
ascertainment scheme may result in the underestimation
of endophenotype heritabilities and genetic correlations
to the extent that they are correlated with schizophrenia.
Second, with a linkage study of 12 endophenotypes, mul-
tiple comparisons are an issue. It is difficult to determine the
appropriate correction in this case, since most of the
endophenotypes are significantly correlatedwith each other
(34). Finally, our sample of predominantly small nuclear
families lacks sufficient power to reliably detect loci with
smaller effects in a linkage analysis. The relatively low power
of this study is independent of the heritabilities of these
endophenotypes and in part reflects variance in the avail-
able data across endophenotypes. Yet, we successfully
identified several genomic regions that warrant further
investigation, despite being underpowered.
We embarked on this endophenotype strategy to provide

a platform to dissect the polygenic basis of schizophrenia
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susceptibility and to identify therapeutic molecular tar-
gets for the treatment of schizophrenia. In this context,
endophenotypes were used as a complementary strategy
to augment the dissection of the clinical and genetic
heterogeneity of schizophrenia, as we and other investi-
gators have discussed (8–10). The linkage analyses of the 12
endophenotypes described in this study represent a first
step toward this goal. While the absence of significant
linkage signals for all endophenotypes may be an issue of
power deficiencies, it is also likely a reflection of the genetic
complexity of the endophenotypes. For example, abnor-
malities in at least 20 different brain regions have been
identified in various schizophrenia cohorts, five of which fall
within regions known to regulate mammalian prepulse
inhibition (89, 90). Deficient prepulse inhibition in schizo-
phrenia might arise from any of these neural abnormalities,
which almost certainly reflect a heterogeneous group of
genetic determinants. Thus, while the biological basis of
these endophenotypes may be simpler than that of schizo-
phrenia per se, they nonetheless remain complex and
appear to be highly polygenic. Conceivably, a refinement of
these endophenotypes may probe a more specific physiol-
ogy and thereby be sensitive to a more pure genetic signal.
Despite these complexities, we have identified several re-
gions meeting the standard genome-wide significant and
suggestive criteria that provide further support for several
existing schizophrenia candidate genes and chromosomal
regions. The extent to which these regions harbor specific
mutations that are involved in schizophrenia susceptibility,
or the cognitive and neurophysiological processes tapped by
our endophenotypes, remains a topic for future discussion
to be informed by ongoing assessments of copy number
variation burden and methylation events, as well as future
sequencing efforts. While schizophrenia and its treatment
will not be easily resolved, the use of interlocking genomic
and endophenotype approaches offers much hope for the
future (91).
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