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Maternal sensory signals in early life play
a crucial role in programming the structure
and function of the developing brain,
promoting vulnerability or resilience to
emotional and cognitive disorders. In rodent

models of early-life stress, fragmentation
and unpredictability of maternally de-
rived sensory signals provoke persistent
cognitive and emotional dysfunction in
offspring. Similar variability and incon-
sistency of maternal signals during both
gestation and early postnatal human life
may influence development of emo-
tional and cognitive functions, including
those that underlie later depression and
anxiety.

(Am J Psychiatry 2012; 169:907–915)

Mental and neurocognitive illnesses commence pre-
dominantly early in life (1, 2), suggesting the need to explore
events in early life that predispose and contribute to dis-
ease onset. The organization and maturation of the CNS
during fetal and early postnatal life are governed by ge-
netic factors and are further modulated by the environ-
mental inputs experienced by the developing brain (3–8).
It follows that an improved understanding of cognitive
and mental illnesses requires knowledge of both genetic
(9, 10) and environmental factors (11–14) that shape brain
development, of the interactions between these factors,
and of the processes that are influenced by these factors
during vulnerable periods in life. In this review of the role
of early-life environment, we build on a remarkable body
of established knowledge of maternal care and maternal-
infant interaction and propose the novel idea that frag-
mentation and unpredictability of maternal signals during
fetal and early postnatal life contribute to adverse cogni-
tive and emotional outcomes and to modification of the
underlying brain structures.

Human Studies: State of the Art

An extensive human literature, strongly influenced by
the work of Bowlby (15), demonstrates that the quality of
the infant-caregiver relationship has profound and lasting
consequences associated with a wide range of develop-
mental outcomes, including those that are important
for mental and cognitive health (16–22). Bowlby studied
mothers and babies and their interactions, as well as the
infants’ outcomes. He observed the dynamic interactions
of infants and their caregivers and the resulting attachment

between children and parents. He proposed that “the extent
to which an individual makes trusting, affectionate, and
cooperative relations with others…depends to a high de-
gree on the relationship which he had with his parents,
especially his mother, in his early years” (15). Subsequent
empirical research has affirmed that infants who develop
a secure attachment relationship are those with a history
of sensitive and responsive maternal care (23–26). Mater-
nal sensitivity has been defined as the mother’s ability
to perceive the infant’s signals accurately and her ability
to respond to these signals promptly and appropriately.
Maternal responsiveness has been characterized as the
degree to which the mother consistently responds to the
infant’s signals. The secure attachment associated with
sensitive and responsive care in turn provides a founda-
tion with broad implications for future emotional regu-
lation, self-esteem, and social adeptness (27), lessening
the risk for poor mental health. For example, securely
attached infants are more independent and more self-
reliant during childhood (26, 28). These children are also
more skilled at emotional regulation, have higher self-
esteem, are more socially adept, and develop coping
skills that make them better able to handle stressful or
challenging situations compared with children with in-
secure attachment relationships (27). In contrast, children
with insecure attachment relationships who experienced
poor quality maternal care are both more vulnerable to
subsequent risk factors and at greater risk for poor mental
health. The aforementioned studies pioneered the idea that
the infant influences the infant-maternal dyad and that
maternal responsiveness is a key parameter of the infant’s
future.
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While these contributions to the field have transformed
our thinking about maternal care, several elements have
beenmore difficult to study in humans. For example, there
is evidence for important alterations in stress response and
reactivity, as well as in brain rhythms (29, 30), in human
infants exposed to low-quality maternal care (28, 31–33),
but the underlying basis is unclear. In addition, it is known
that maternal mental and cognitive health is associated
with the quality of maternal care, and it is difficult to dis-
sociate a mother’s responsiveness and sensitivity from her
mental and cognitive health. Similarly, it is difficult in
human research to distinguish between the contribu-
tion of maternal genes (e.g., those predisposing to de-
pression) and the contribution of illness-induced changes
in maternal care.

Animal Studies: Resolving Clinically
Driven Questions

To address these issues, the role of maternal-derived
signals has been studied in experimental models. First, the
influence of elements of maternal behavior on offspring
has been addressed in elegant studies of nonhuman
primates (34, 35). For example, Sabatini et al. (35) elucidated
the age-dependent effects of maternal care on vulnerability
to subsequent stress and delineated the underlying
changes in amygdala gene expression profiles. The rela-
tive contributions of maternal care and early-life stress
to subsequent resilience to stress were highlighted by
Parker et al. (34). Rodent models of maternal care have
also proven useful. During the 1980s and 1990s, studies by
Levine’s group suggested that active sensory input from
the mother (dam), rather than passive contact, warmth of
the dam’s body, or maternal-derived nutrition, contrib-
uted to the future stress responses of neonatal rodents
(36–38). Meaney’s group as well as ours identifiedmaternal
licking and grooming as among the principal sensory
signals from the dam to the developing brains of her
offspring (29, 39–42). Brain mapping studies examining
Fos expression demonstrated that these maternal signals
activate a network of brain structures, eventually reach-
ing stress processing regions of the hypothalamus (43)
and influencing gene expression. Indeed, the molecular
signature of offspring receiving high levels of maternal
care signals includes sustained suppression of corticotropin-
releasing hormone (CRH) gene expression in hypotha-
lamic neurons (42, 44, 45) and altered methylation of the
glucocorticoid receptor gene promoter in the hippocam-
pus, enhancing expression of this receptor in a persistent
manner (40, 46). Together, these changes contribute to
attenuation of neuroendocrine stress responses through-
out life.

These rodent studies provide strong support for Bowlby’s
initial proposal in humans that maternally derived sensory
signals are a crucial mechanism by which the environment
influences brain development. Importantly, rodent studies

allow direct manipulation of maternal behavior and
careful control of other variables (36, 37, 41, 47). These
experimental manipulations lead to reliable inferences
about the causal relationship between patterns of sensory
input derived from maternal care and emotional and cog-
nitive outcomes in adult offspring, without the potential
confounders of maternal emotional health and genetic
elements. More recently, correlation of maternal care be-
havior toward individual rat pups with each pup’s out-
come has strengthened this association in rodents (48),
further suggesting that these experimental findings and
models might be useful in enhancing our understanding
of how maternally derived patterns of sensory input
sculpt the developing brain.
Maternal care may not be independent from other

environmental signals that influence brain development
and organization. Rather, the environment may influence
maternal behavior, which in turn may modulate the de-
veloping brain. For example, a high-fat diet may govern
bothmaternal behavior and components of maternal milk
that influence the behavior of pups. Thus, high-fat feeding
of dams during the prenatal and lactational period has
been reported to blunt stress responsiveness in neonatal
pups, mediated in part by increased circulating leptin
levels in the offspring (49). As a second example, environ-
mental effects on the mother may modulate molecular
signaling through growth factors in the placenta and
influence fetal brain growth and function (50, 51). Finally,
a stressful environment for the nursing mother, such as
simulated poverty in rodents (52–56), provokes not only
profound stress in the dam (57) but also abnormal nurtur-
ing behaviors toward the pups (53, 54, 56, 57). The timing of
the abnormal signals as well as the sex of the offspring
further influence the outcome (50, 51, 58). Thus, the
environmentmay altermaternal behavior, which translates
into abnormal sensory input to the developing brain. These
observations raise the question of which particular ele-
ments of maternal care reach the developing brain and
influence its function over the long term. A second question
is how disruption of these maternal-derived signals
modulates offspring outcomes.

Quantity, Quality, and Patterns of
Maternal Signals Influence the
Developing Brain

Both quantitative and qualitative aspects of maternal
care have been validated as important parameters for
influencing brain function in offspring. In experimental
models, augmented quantity of maternal care results in
attenuation of stress-hormone gene expression, reduced
stress responses, and resilience to depressive-like behavior.
Conversely, absent or minimal maternal care is associated
with both cognitive and emotional defects in humans
(16, 31, 59, 60), nonhuman primates (61–63), and rodents
(64, 65).
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The quality ofmaternal carehas typically been considered
in terms of the mother’s sensitivity and responsiveness to
the infant, as described above. However, in response to an
infant’s needs, a mother may provide care with or without
a consistent “rhythm” (duration, repetition). In addition,
a mother may engage in variable durations or sequences of
care in response to the sameneed. In otherwords, given that
a mother responds to the infant, the pattern, duration, and
reproducibility of the responsive care may vary. Notably,
infant-independent forces may also govern maternal care
patterns. These facts provide the rationale for considering
the patterns of care, and specifically the fragmentation and
unpredictability of maternally derived signals that reach the
developing brain, as a potential influence on brain devel-
opment. These parameters of care do not supplant the cru-
cial importance of sensitivity and responsiveness; rather,
they enhance our understanding of maternal care patterns
that may contribute to the infant’s future emotional and
mental vulnerabilities.

Could Fragmentation and
Unpredictability of Maternal Signals
“Program” the Developing Brain?

In human maternal behaviors, fragmentation refers to a
behavior consisting of many sequences of simple patterns
(Figure 1). In rodents, fragmentation refers to the degree to
which a caring behavior occurs in numerous short
episodes, rather than a small number of long episodes,
under conditions when the total amount of the behavior
remains relatively constant (Figure 2). Unpredictable ma-
ternal behavior in both humans and rodents refers to
patterns involving more than one behavior and measures
the occurrence of consistent versus inconsistent sequences
or patterns of behavior (Figure 1) (66). Thus, in considering
unpredictability, we ask, for example, whether smiling al-
ways follows eye contact (in humans) or grooming always
follows nursing (in rodents). This measure is independent
of the sensitivity of the mother-to-infant cues; rather, it
assesses the observed regularities and irregularities in a
sequence of behaviors. These may be quantified by
the proportion of time one behavior follows another or
by measuring the entropy (randomness [67]) of the
conditional probability distribution following a given
behavior.

Fragmented and Unpredictable
Maternal Signals in Pre- and
Postnatal Humans

A potential contribution of fragmented maternally de-
rived signals to adverse cognitive and emotional outcomes
has emerged in studies of the human fetus and of early
postnatal life. The nature of the sensory input conveyed by
the mother to the fetus is not fully understood, yet mater-
nal emotional states during gestation have been found

to contribute significantly to neuropsychiatric outcome
(68–70). Our group recently began to explore the impor-
tance of consistency relative to fragmentation of maternal
emotional states in influencing neuropsychiatric out-
comes in the infant and child. We observed that mental
development was greater in 1-year-old children whose
mothers experienced consistent emotional states be-
fore and after delivery (71). This was true even when the
emotional state was of depressive symptoms and con-
trasted with outcomes for offspring of mothers with
inconsistent emotional states before and after delivery
(Figure 3).
While these findings are remarkable, it remains unclear

how these maternal emotional states are transmitted to
the fetus. An intriguing possibility is that the mother
conveys emotional information to her fetus via physiolog-
ical parameters, such as hormone levels or patterns of
respiration or heart rate (69, 70). For example, the fetal
auditory system is capable of detecting and responding to
maternal heartbeats by 25 weeks’ gestation (72, 73), and
magnetoencephalography studies have reported that the
human fetal brain responds to maternal heartbeats and
external sounds (72). Unpublished data from our group
suggest that maternal heartbeat patterns can also be
categorized as consistent or fragmented and that there
are wide individual differences in unpredictable and
fragmented maternal heartbeat patterns in healthy
populations of pregnant women. It is not yet known
whether maternal heart rate patterns join stress hor-
mones in providing potential biomarkers of maternal
emotional states that are known to alter offspring
outcomes (69–71).
Regarding postnatal maternal signals (i.e., maternal

care), the importance of patterns of care is evident from
the work of Bowlby (15) and the large body of subsequent
literature. In essence, this work strongly supports the
notion that patterns of maternal behavior during neona-
tal and infant life may influence the infant brain and
contribute to the emotional profile and neurocognitive
development of offspring. The question that arises con-
cerns whether it is possible to quantify and then categorize
maternal behavioral patterns by their unpredictability and
fragmentation, as distinct from maternal sensitivity to the
infant. A key follow-up question is whether such analyses
would provide important new information about the nature
of maternal behavioral effects on emotional and cognitive
outcomes. The answers to these questions are emerging.
We have used video recordings to identify and code specific
sensory signals from the mother to the infant, which were
analyzed in several ways to infer fragmentation and unpre-
dictability (Figure 1). Within a population of mothers with-
out diagnoses of mental disorders, unpredictable maternal
behavior (i.e., low conditional probabilities of faithful oc-
currence of a given pair of nurturing behaviors) varied
widely and was normally distributed. Ongoing studies are
examining whether this unpredictability of maternal care,
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independent of total care duration, influences aspects of
infant behavior and developmental parameters that predict
mental and cognitive outcomes.

Fragmented and Unpredictable Maternal Signals
in Rodent Models

In rodents, the qualitative and quantitative aspects of
maternal care (74) were evaluated by our group using
a model of simulated poverty that consisted of reduced
bedding and nestingmaterials in the home cage (52, 56, 57,
75). Surprisingly, fragmentation of maternal care into
short epochs of individual nurturing behaviors, with

preserved total duration of each behavior (Figure 2),
provoked significant cognitive and emotional problems
in the pups, which became apparent later in life and
persisted throughout middle age (52, 55). Learning
defects were associated with (and perhaps a result of)
loss of hippocampal synapses and dendritic spines and
branches (52) (Figure 4). Emotional problems resulting
from fragmented maternal signals included augmented
anxiety-like behavior in weanling rats and increased
vulnerability to depressive-like behavior. In contrast,
consistent and predictablematernal care led to effects that
were opposite those generated by fragmented care; daily

FIGURE 1. Analyses of the Fragmentation and Unpredictability of Maternal Behavior in a Naturalistic Setting in Humansa
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a The bar graph in panel A depicts the behavioral profile of a mother with fragmented care behavior compared with the behavioral profile of a
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(e.g., smiling and then holding up a toy), compared with complex behavioral patterns of three or more components. A mother with
nonfragmented behavior exhibits a large number of complex (four or more components) behavioral sequences. Panel B depicts single
temporal patterns from a mother interacting with her 12-month-old child while exhibiting nonfragmented care. The left top subpanels
show that the temporal pattern is initiated by the behavior “no toy in hand,” has four behavioral elements (e.g., look at infant, coo at
infant, touch infant, pick up toy), and is repeated 13 times. This pattern consists of two hierarchical levels (smaller patterns connected to
form larger patterns). The smaller pattern, “new toy speech,” is repeated 15 times without being part of the larger pattern. Both the length
and level are considered measures of complexity. The frequency and temporal ordering of the events evolving into patterns are depicted in
the upper right subpanel, and the sequence of events is depicted in the bottom subpanel. (Unpublished data, available upon request from
the authors.)
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bouts of maternally derived licking and grooming were
increased experimentally by returning rat pups to their
mothers after a brief separation. Receiving recurrent,
consistent, and predictable care for even 1 week re-
sulted in a phenotype of resilience to subsequent
stress and to depressive-like behaviors associated with
reduced levels of CRH expression in the hypothalamus
(45, 76, 77).
The mechanisms through which distinct patterns of

maternally derived signals lead to these opposing molec-
ular and functional/behavioral phenotypes are not fully

understood. Recurrent, predictable episodes of maternal
care activate brain regions, including the thalamic para-
ventricular nucleus, that are not engaged by a single
episode of care (43). The paraventricular nucleus has been
considered a “stress memory” storage region (78), and it
exerts inhibitory effects on limbic regions, including the
central nucleus of the amygdala and the bed nucleus of the
stria terminalis, that regulate stress responses and CRH
expression within the hypothalamus (75, 79). Indeed, pre-
dictable and recurrent patterns of maternal care have
been reported to reduce the number and function of

FIGURE 2. Fragmentation of Rodent Maternal Behavior Provoked by Adversitya
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excitatory synapses on CRH-expressing neurons within
the hypothalamus (42, 47), essentially modulating neuro-
nal “wiring.” These data suggest that maternally derived
sensory signals may influence intercellular signaling in the
developing brain. This in turn modulates intracellular
processes, including gene expression, leading to enduring
alterations of neuronal function (47, 80). Interestingly,
reduced CRH expression was found to begin in infancy
and to lead to diminished CRH release during stress. The
resulting attenuation of plasma glucocorticoid levels
during stress enhanced the expression levels of hippo-
campal glucocorticoid receptors (45, 76). Other studies
reproduced the augmented glucocorticoid receptor ex-
pression by partial blocking of CRH receptors (77), sug-
gesting that, in rodent pups, reduction of hypothalamic
CRH expression and of hormonal responses to future
stresses is an important mechanism for long-lasting re-
silience to stress-provoking signals (2, 6, 14, 31, 44, 58, 68,
76, 81–83).
If predictable and consistent sensory input from the

mother reduces excitation and gene expression in key
neurons, it seems reasonable to speculate that fragmented
or unpredictable sensory signals may have an opposite
effect. In support of this possibility, CRH expression in the
hippocampus is persistently enhanced in adult rats that
experienced fragmented maternal care early in life, an
aberrant hyperexpression that endures for 12 months or
longer (55). However, much work is needed to identify the
synaptic and intracellular processes through which spe-
cific patterns of maternally derived sensory input “pro-
gram” gene expression and behavioral patterns in the long
term.

FIGURE 3. Effect of Consistency and Fragmentation of Pre- and Postnatal Maternal Emotional States on Neuropsychiatric
Outcomea
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FIGURE 4. Fragmented Maternal Care During Early Post-
natal Life Leading to Impoverished Dendritic Trees in
Hippocampal Area CA1 Neuronsa
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Fragmentation of maternal care was elicited as described in Figure
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microns. Adapted from Brunson et al. (52). Copyright © 2005.
Society for Neuroscience. Used with permission.
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Discussion: Challenges and Future
Directions

We propose that fragmented and unpredictable pat-
terns and sequences of maternally derived signals (distinct
from maternal sensitivity to infant needs and overall
quantity of maternal care) influence brain development in
a manner that contributes to emotional and cognitive
outcomes. This concept is not unexpected if one considers
that sensory input in early life might govern neuronal
activity (31, 70, 84) and that neuronal activity influences
synapse development and brain organization (85–88). An
important link in this proposed chain of events is the
demonstration that specific patterns of maternally derived
sensory input influence the number and function of
synaptic connections onto specific neurons. This type of
study is feasible in animal models, in which it has been
found that maternal signals travel from sensory regions
to stress-related brain regions (70, 89–91). Notably, the
patterns of maternal care have been reported to modulate
the number and function of synapses of stress-responsive
neurons (42). These alterations in synaptic intercellular
signaling are predicted to influence intracellular signaling,
turning on epigenetic processes that program the expres-
sion of genes contributing to vulnerability or resilience to
stress-related neuropsychiatric disorders.
The patterns—and especially the degree of fragmenta-

tion and unpredictability—of maternal signals are impor-
tant both before and after birth, influencing the child’s
neuropsychiatric outcome. Furthermore, these sequential
epochs of development seem to interact in their com-
bined effects on outcome, and the consistency of pre-
and postnatal maternal signals may be as (or more)
important than the nature of the signals themselves (71)
(Figure 3).
In summary, the contribution of maternally derived

signals to vulnerability and resilience to mental illnesses
is well established. Less understood is the spectrum of
maternal care patterns that influence the infant/fetal
brain and the pathways and mechanisms through which
these crucial influences take place. We propose the novel
concept that fragmentation and predictability of maternal
sensory signals influence the developing brain and
contribute to future cognitive and emotional vulnera-
bilities. We need to study the inter- and intracellular
mechanisms involved at both molecular/cellular and
network levels. We also need to establish the trajectories
of the effects and to define biomarkers that will enable
early recognition and eventual intervention. Hopefully,
the concept of fragmented and unpredictable early-life
environment as a cardinal contributor to subsequent
vulnerability to disorders, including depression, anxiety,
and certain cognitive deficits, will provide a theoretical
unifying framework for a large and important body of
existing literature on the origin of mental and cognitive
illnesses.
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