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such as Alz heimer’s disease (16), schizophrenia (17), and 
acute psychological trauma (18). However, no study has 
yet determined whether patients with refractory and non-
refractory depression can be distinguished by differential 
functional integration within specific neural networks.

Resting-state functional connectivity MRI (fcMRI) (19) 
has been increasingly used to investigate the integration 
of neural networks at a resting state when no task is per-
formed (20). Low-frequency (0.01–0.08 Hz) fluctuations 
of the blood-oxygen-level-dependent (BOLD) signal in 
the resting state are considered to be physiologically 
meaningful and related to spontaneous neural activity 
(21). While task-based functional MRI (fMRI) studies can 
assess disturbances in functional connectivity when pa-
tients perform a particular task, assessment of resting-
state connectivity has different and potentially broader 
significance, because it requires minimal patient compli-
ance, can be obtained under anesthesia, and is well suited 
for translation into the clinical realm (19). This technique 
has been successfully used to detect abnormal functional 
integration in major depressive disorder (22).

As different regional alterations have been observed in 
patients with refractory and nonrefractory depression (1), 
we hypothesized that different systems-level disturbances 
would be observed in distributed brain networks. Our pur-
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Objective: The authors used resting-
state functional connectivity MRI to evalu-
ate brain networks in patients with refrac-
tory and nonrefractory major depressive 
disorder.

Method: In a cross-sectional study, 28 pa-
tients with refractory major depression, 
32 patients with nonrefractory major de-
pression, and 48 healthy comparison sub-
jects underwent scanning using a gradi-
ent-echo echo-planar imaging sequence 
on a 3-T MR system. Thirteen regions of 
interest that have been identified in the 
literature as relevant to mood regulation 
were selected as seed areas. A reference 
time series was extracted for each seed 
and used for voxel-wise correlation analy-
sis with the rest of the brain. Voxel-based 
comparisons of z-value maps among the 
three groups were performed using one-
way analysis of variance followed by post 
hoc t tests with age and duration of illness 
as covariates of no interest.

Results: Relative to healthy comparison 
subjects, both patient groups showed 
significantly reduced connectivity in 
prefrontal-limbic-thalamic areas bilater-
ally. However, the nonrefractory group 
showed a more distributed decrease in 
connectivity than the refractory group, 
especially in the anterior cingulate cortex 
and in the amygdala, hippocampus, and 
insula bilaterally; in contrast, the refrac-
tory group showed disrupted functional 
connectivity mainly in prefrontal areas 
and in thalamus areas bilaterally.

Conclusions: Refractory depression is 
associated with disrupted functional con-
nectivity mainly in thalamo-cortical cir-
cuits, while nonrefractory depression is as-
sociated with more distributed decreased 
connectivity in the limbic-striatal-pallidal-
thalamic circuit. These results suggest that 
nonrefractory and refractory depression 
are characterized by distinct functional 
deficits in distributed brain networks.

Substantial efforts have been made in the past decade 
to elucidate the neural basis of major depressive disor-
der. Structural and functional neuroimaging studies of 
patients with depression have revealed a complex neuro-
pathophysiology involving regional deficits in the limbic-
thalamo-prefrontal and limbic-striatal-pallidal-thalamic 
systems (1–9). About 30% of patients do not respond to 
standard antidepressant treatment and are classified as 
having refractory depression, while those who respond 
have nonrefractory depression (10). Little is known about 
how these two clinical subtypes differ at the neuronal 
level. We investigated the functional deficits in these two 
subtypes in the hope that noninvasive measurements 
might eventually make it possible to distinguish them 
at an early stage of clinical intervention. We recently (1) 
identified regional cerebral perfusion differences between 
these groups: the refractory group showed reduced perfu-
sion in prefrontal and thalamic areas, while the nonrefrac-
tory group showed reduced perfusion in left frontal areas 
and increased perfusion in limbic-striatal areas. The ef-
fects of these regional alterations in resting perfusion on 
systems-level disturbances in distributed brain networks 
are of course impossible to predict. There is increasing 
evidence that neural networks are disrupted in depression 
(11–15) as well as in other neuropsychiatric conditions, 
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mm (no slice gap) with a matrix size of 64×64 and a field of view of 
240×240 mm2, resulting in a voxel size of 3.75×3.75×5 mm3. Each 
brain volume comprised 30 axial slices, and each functional run 
contained 200 image volumes.

Data Processing and Analysis

Preprocessing and statistical analysis of functional images 
were carried out using the SPM2 software package (www.fil.ion.
ucl.ac.uk/spm/). For each participant, EPI images were slice-time 
corrected, realigned to the first image in the first series, and un-
warped to correct for artifacts due to susceptibility-by-movement 
interaction. The resulting images were spatially normalized to the 
Montreal Neurological Institute (MNI) EPI template in SPM2, and 
each voxel was resampled to 3×3×3 mm3. The processed images 
were smoothed with an isotropic Gaussian kernel (full-width at 
half-maximum=8 mm). Functional connectivity was examined 
using the Resting-State fMRI Data Analysis Toolkit (REST) soft-
ware package (http://resting-fmri.sourceforge.net) using a seed 
voxel correlation approach (28, 29). As structural and functional 
studies in patients with depression have revealed regional defi-
cits in the limbic-thalamo-prefrontal and limbic-striatal-pallidal-
thalamic systems (1–9, 11–15), we selected as seeds 13 areas that 
constitute these: the left and right hippocampus, insula, dorsal 
lateral prefrontal areas, amygdala, putamen, and thalamus and 
the anterior cingulate cortex. Using REST, after bandpass filter-
ing (0.01–0.08 Hz) (21) and linear trend removal, a reference time 
series for each seed was extracted by averaging the fcMRI time se-
ries of voxels within each region of interest as defined in the WFU 
(Wake Forest University) PickAtlas (30, 31). The Ideal Filter was 
used for bandpass filtering by transforming the time series into 
the frequency domain by discrete Fourier transform, assigning a 
value of zero to the excluded frequency, and then transforming 
back to the time domain by inverse discrete Fourier transform. 
Thirteen correlation analyses were performed voxel-wise be-
tween each seed reference and the rest of the brain. Finally, the 
correlation coefficients in each voxel were transformed to z-value 
images using the Fisher r-to-z transformation to improve nor-
mality before averaging across subjects. Using SPM2, the impact 
of potential physiological artifacts such as cardiac or respiratory 
noise (32, 33) was minimized by regressing out components with 
high correlations with CSF or white matter or low correlations 
with gray matter.

For the patient data, individual z-value maps were analyzed 
with a random-effects one-sample t test to identify voxels show-
ing a significant positive or negative correlation with the seed 
time series, the correlations being thresholded using a p<0.05 
family-wise error correction for multiple comparisons. Voxel-
based comparison of z-value maps among the three groups was 
performed using a design model of one-way analysis of variance 
with age and disease duration as covariates followed by post hoc 
two-sample t tests. The statistical significance of each region was 
estimated by distributional approximations from the theory of 
random Gaussian fields (34). In this method, clusters in smooth 
areas are shrunk while those in rough areas are expanded to ac-
count for differences in smoothness (34). Significance thresholds 
were set at 0.05 after family-wise error correction with an extent 
of more than five contiguous voxels. MNI coordinates were trans-
formed to Talairach coordinates using mni2tal (http://imaging.
mrc-cbu.cam.acuk/ download /MNI2tal).

Results

Age, sex, and handedness were not significantly dif-
ferent between the patient groups and the comparison 
group. Depression severity (HAM-D score) was not signifi-
cantly different between the refractory and nonrefractory 

pose, therefore, was to use resting-state fcMRI to quantify 
functional connectivity in 28 patients with refractory de-
pression, 32 patients with nonrefractory depression, and 
48 healthy comparison subjects.

Method

Participants

This study was approved by the local ethical committee, and 
written informed consent was obtained from all participants. The 
patients in the present analysis were part of a large cohort study 
of major depression in the Chinese population of Han national-
ity. Patients were recruited consecutively, and the diagnosis of 
major depressive disorder was made with the Structured Clini-
cal Interview for DSM-IV Axis I Disorders (SCID) (23). Exclusion 
criteria were bipolar disorder, any history of major illness, previ-
ous psychiatric therapy, cardiovascular disease, age less than 18 
or over 60 years, use of vasoactive medications, and alcohol or 
drug abuse. Originally 82 right-handed patients were recruited, of 
whom 22 were excluded by the above criteria. Finally, 60 patients 
were included in the study, none of whom had received antide-
pressant treatment before enrollment. Severity of depression was 
quantified using the 17-item Hamilton Depression Rating Scale 
(HAM-D) (24) and the Clinical Global Impressions (CGI) sever-
ity item (25). To be included in the study, patients had to have a 
HAM-D total score ≥18 and a CGI severity score ≥4 on the day of 
MR scanning.

After MR imaging, antidepressant treatment was started for all 
patients. Three classes of antidepressants were used: tricyclics, 
typical serotonin-norepinephrine reuptake inhibitors, and typi-
cal selective serotonin reuptake inhibitors. All antidepressants 
were empirically prescribed according to the clinical judgment 
of the treating psychiatrist. No patient was treated with ECT or 
had received ECT in the past. Refractory depression is defined as 
a poor response after at least two trials with antidepressants from 
different classes, with adequate dosages, duration (6 weeks for 
each trial), and compliance (26, 27). A poor response is defined 
as a reduction of <50% in HAM-D score with a minimum dosage 
of 150 mg/day of imipramine or the equivalent for 6 weeks. This 
outcome measure was chosen because it allows simple analyses 
that aid interpretation, particularly from a clinical perspective. 
Nonrefractory patients are those who had a reduction >50% in 
HAM-D score after treatment.

In addition, 48 right-handed healthy comparison subjects were 
recruited from the local area by poster advertisements. Compari-
son subjects were screened using the non-patient edition of the 
SCID to confirm the lifetime absence of a history of psychiatric or 
neurological illness and were interviewed to exclude any family 
history of psychiatric illness.

All participants were found by two experienced radiologists to 
have no abnormalities on conventional MRI.

MRI Scanning

Patients and comparison subjects underwent scanning using 
a GE Signa EXCITE 3-T MR system (GE Healthcare, Milwaukee) 
with an 8-channel phased array head coil. During scanning, par-
ticipants were instructed to relax with their eyes closed without 
falling asleep; after the experiment, each participant confirmed 
not having fallen asleep during scanning. Participants were fitted 
with soft earplugs and positioned carefully in the coil with com-
fortable support. MR images sensitive to changes in BOLD signal 
(repetition time=2,000, echo time=30 msec, flip angle=90 de-
grees) were obtained with a gradient-echo echo-planar imaging 
(EPI) sequence. Five dummy scans were discarded to remove the 
impact of magnetization stabilization. The slice thickness was 5 
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control over limbic regions, is thought to be at the root of 
the pathogenesis of emotional, behavioral, cognitive, and 
endocrine changes in depression (38, 39). Consistent with 
this hypothesis, reduced fronto-limbic connectivity has 
been reported in both task (40, 41) and resting-state (42) 
fMRI studies in patients with depression, although results 
have been inconsistent, with reports of both increased 
and decreased connectivity. Our results confirmed the de-
crease in connectivity involving the prefrontal cortex in a 
cohort of 60 patients with depression. Furthermore, this 
decreased connectivity was more widespread in the group 
with nonrefractory depression than in the group with re-
fractory depression.

The limbic system has widespread connections to the 
prefrontal cortex, amygdala, and thalamus (43), and it 
plays a critical role in anxiety and depressive states (44) 
in addition to its contribution to learning and memory. In 
the patients with nonrefractory depression, connectivity 
was decreased among distributed limbic areas, particu-
larly in the anterior cingulate cortex and in the prefrontal 
and insula regions bilaterally (Figure 1A). The same net-
work of regions was identified in a recent meta-analysis 
of cortical-subcortical interactions in emotion processing 
(45). Thus, it may be that decreased connectivity in this 
network underlies emotional dysregulation in these pa-
tients. The insula is thought to mediate interpretation of 
sensory information from the body (interoception) that 
contributes to emotional states (46). Decreased connec-
tivity in this circuit might therefore underlie such depres-
sive symptoms as somatic complaints and negative bias in 
interpreting bodily feedback.

This decreased functional connectivity between pre-
frontal and limbic networks in the group with nonrefrac-
tory depression may also account for the inverse relation-
ship of activation between prefrontal lobe and limbic 
regions reported in previous studies (1, 40). Prefrontal 
cortical-limbic connectivity serves as an inhibitory link 
between those regions and is reduced in depression (47). 
The consequent disinhibition might account for the over-
activity of the limbic system in the group with nonrefrac-
tory depression. This in turn might stimulate the hypo-
thalamic-pituitary-adrenal axis (48, 49), and consequent 
glucocorticoid oversecretion could contribute to loss of 

groups, although the refractory group had the longer ill-
ness duration (Table 1) (p<0.05). Differences in HAM-D 
scores between male and female patients did not reach 
significance in either the refractory group (male: mean=23 
[SD=4]; female: mean=22 [SD=3]) or the nonrefractory 
group (male: mean=24 [SD=3]; female: mean=24 [SD=4]), 
and depression severity was not correlated with age.

Voxel-Based Analysis Results

Relative to the comparison group, both the nonrefrac-
tory and refractory groups showed significantly reduced 
connectivity within prefrontal-limbic-thalamic areas bi-
laterally (Table 2). The nonrefractory group showed the 
more distributed decrease in connectivity, especially in 
the anterior cingulate cortex and the left and right pre-
frontal cortex, hippocampus, insula, and amygdala (Table 
2, Figure 1A), while in the refractory group decreased con-
nectivity was mainly in prefrontal areas and the thalamus 
areas bilaterally (Table 2, Figure 1B). Direct comparison 
between the groups showed decreased connectivity in the 
nonrefractory compared with the refractory group within 
the left amygdala-anterior cingulate cortex-right insula-
precuneus region (Table 2, Figure 1C). These findings were 
not correlated with illness duration or age.

Discussion

Using resting-state fMRI in a cohort of patients with 
well-characterized depression, studied before commence-
ment of medication, we found altered functional connec-
tivity mainly involving the frontal-subcortical circuits, 
which are strongly implicated in depression (35). Further-
more, we observed differences in functional connectivity 
related to treatment responsiveness, with the nonrefrac-
tory group showing a decrease mainly in the limbic-stria-
tal-pallidal-thalamic circuits (Figure 1A), while the refrac-
tory group showed a decrease mainly in thalamo-cortical 
circuits (Figure 1B).

Convergent evidence from functional brain imaging, 
therapeutics, and lesion studies suggests that depression 
is associated with dysfunction in several functionally in-
tegrated pathways (36, 37). More specifically, a loss of top-
down regulation, especially the loss of prefrontal cortex 

tABle 1. Demographic and Clinical Characteristics of Patients With Nonrefractory and Refractory Depression and Healthy 
Comparison Subjects

Characteristic
Patients With Nonrefractory 

Depression (N=32)
Patients With Refractory 

Depression (N=28)
Healthy Comparison  

Subjects (N=48)

N % N % N %
Female 11 34.4 10 35.7 17 35.4

Mean SD Mean SD Mean SD
Age (years) 32 10 33 11 35 12
Illness duration (months) 22 18 193 120
Hamilton Depression Rating Scale

Score before treatment 23.0 4.7 23.3 4.1
Score after treatment 11.2 2.6 19.6 3.1
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with refractory depression (Figure 1C) is surprising, as one 
might have expected more impaired connectivity in the 
latter. However, this finding is not implausible in light of 
previous neuroimaging studies suggesting that functional 
alterations may be specifically present in nonrefractory 
patients. For example, in an investigation using arterial 

frontal lobe integrity (50). Such decreased connectivity 
has been reported to improve after 6 weeks of treatment 
with sertraline in responders (51) and may have a genetic 
basis, for example, in the 5-HTTLPR allele (52).

The finding of decreased functional connectivity in the 
group with nonrefractory depression relative to the group 

tABle 2. Difference of Functional Connectivity Among Patients With Nonrefractory Depression, Patients With Refractory 
Depression, and Healthy Comparison Subjects

Brodmann’s 
Area

Talairach Coordinates Voxel 
SizeSeed Area Connected Location x y z pa

Comparison group > nonrefractory group
Anterior cingulate cortex Left middle temporal gyrus 7 –42 –63 6 43 <0.001

Left parietal cortex 5 –21 –48 48 18 0.015
Right inferior frontal gyrus 47 18 15 –24 37 <0.001

Left amygdala Left cingulate cortex 24 0 3 27 29 0.007
Left frontal Right insula 13 42 15 18 25 0.008

Right cingulate cortex 32 9 30 27 39 <0.001
Left cingulate cortex 24 –3 0 24 32 0.006

Left hippocampus Cingulate cortex 33 0 9 24 10 0.035
Left putamen –16 9 12 20 0.013
Left parietal cortex 40 –24 –45 54 46 <0.001

Left insula Precuneus 7 –18 –48 48 33 0.005
Right parietal cortex 5 21 –39 51 6 0.044
Left middle temporal gyrus 38 –36 0 –15 35 0.002
Right occipital cortex 18 51 –21 6 9 0.039
Right cingulate cortex 31 6 –51 45 37 <0.001

Left thalamus Right inferior frontal gyrus 45 30 27 9 36 0.001
Right amygdala Left cingulate cortex 24 –3 –9 27 40 <0.001
Right insula Right hippocampus 30 0 –24 35 0.001

Left insula –39 –21 24 42 <0.001
Right occipital cortex 24 –87 15 30 0.004
Precuneus 7 –18 –48 48 42 <0.001
Right middle temporal gyrus 39 30 –57 30 21 0.011

Right putamen Precuneus 7 –18 –48 48 44 <0.001
Right thalamus Cingulate cortex 33 0 9 24 31 0.006
Right hippocampus Right inferior frontal gyrus 45 45 18 12 17 0.016

Right insula 13 42 0 18 7 0.043
Left cingulate cortex 23 –3 –15 30 20 0.013

Comparison group > refractory group
Left frontal Precuneus 7 –27 –51 51 19 0.01

Right parietal cortex 40 39 –39 51 38 <0.001
Left thalamus Right insula 13 30 24 9 5 0.051

Right putamen 17 7 11 15 0.022
Right cingulate cortex 32 3 30 51 18 0.014
Left middle frontal gyrus 9 –21 29 33 20 0.011

Left hippocampus Left middle temporal gyrus 37 –54 –57 –27 19 0.013
Right insula Precuneus 7 21 –63 33 11 0.033

Cingulate cortex 31 15 –45 24 26 0.007
Right putamen Left middle frontal gyrus 8 –33 18 42 28 0.003

Right inferior frontal gyrus 9 36 9 24 13 0.034
Right thalamus Right inferior frontal gyrus 9 36 9 27 10 0.045

Left middle frontal gyrus 9 –6 30 36 20 0.008
Left putamen –18 12 9 19 0.009
Right insula 13 30 21 6 14 0.025

Refractory group > nonrefractory group
Left amygdala Cingulate cortex 24 0 18 27 37 <0.001
Right insula Cingulate cortex 31 15 –45 24 26 0.007

Precuneus 7 21 –63 33 12 0.033
a Corrected for multiple comparisons with family-wise error correction.
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sociated with disrupted connectivity in thalamo-cortical 
circuits. This may partly explain why patients with refrac-
tory depression are refractory to standard antidepressants 
but respond well to treatments targeting frontal areas 
(59–61).

Several study limitations should be considered when in-
terpreting these results. First, the data are cross-sectional; 
whether these altered neural networks change dynamical-
ly after therapy remains to be established in longitudinal 
studies. Second, patients were treated with a drug belong-
ing to one of three different classes with heterogeneous 
pharmacological profiles. This heterogeneity limits the 
translational value of our results since the same patient 
may show a poor response to one drug class and a good 
response to another. Future studies aimed at informing 
clinical intervention will benefit from the investigation of 
a single drug, or at least drugs with the same pharmaco-
logical profile. Finally, the refractory group had a greater 
illness duration than the nonrefractory group. Although 
we used illness duration as a covariate in the statistical 
analysis, we cannot exclude the possibility that our results 
were influenced by this variable. Again, a longitudinal 
approach would allow examination of whether and how 
these altered neural networks change with the develop-
ment of the illness.
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spin-labeling MRI (1), we found that patients with nonre-
fractory depression but not those with refractory depres-
sion showed altered perfusion in the limbic system rela-
tive to healthy comparison subjects. One possibility is that 
alterations in nonrefractory patients are localized within 
the limbic system, which is also the target of standard an-
tidepressants (53), whereas alterations in refractory pa-
tients are expressed in a thalamo-cortical circuit, which 
may be less sensitive to antidepressant medication (53). 
This would explain why pharmacological treatment is ef-
fective in only one clinical group even though both groups 
show altered brain functioning.

Despite this at-first-sight surprising result of direct 
comparison between the refractory and nonrefractory 
groups, the comparisons between each patient group and 
healthy comparison subjects appeared to suggest more 
disrupted alterations of functional connectivity in the 
refractory than in the nonrefractory group in prefrontal 
areas and in the thalamus areas bilaterally (Figure 1B). 
This is consistent with results of previous studies (54–56) 
suggesting greater disruption within thalamo-frontal cir-
cuits in refractory depression relative to nonrefractory 
depression. For example, more severe frontal deficits are 
reported in patients with late-onset depression associ-
ated with frontal vascular disease (57), who have higher 
rehospitalization rates and treatment resistance (58). Also, 
therapeutic intervention targeting frontal areas has been 
reported to be useful in refractory patients (59, 60) and to 
be correlated with clinical improvement (61). Finally, in-
creased thalamic metabolism has been reported in remit-
ted depressed patients after tryptophan depletion but not 
after sham depletion (62). Abnormal functional connec-
tivity between thalamus and medial prefrontal regions has 
also been found to be associated with refractoriness (22). 
These findings, together with the results of our investiga-
tion, suggest that refractory depression may be mainly as-

FIGURe 1. Difference of Functional Connectivity Map for Patients With Nonrefractory and Refractory Depression and 
Healthy Comparison Subjectsa
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a All p values are <0.05, corrected. The blue lines show decreased functional connectivity. In panel A, patients with nonrefractory depression 
showed decreased connectivity relative to healthy comparison subjects mainly in limbic-striatal-pallidal-thalamic circuits, including the an-
terior cingulate cortex and the left and right prefrontal cortex, hippocampus, insula, and amygdala. In panel B, patients with refractory de-
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the left amygdala-anterior cingulate cortex-right insula-precuneus in the nonrefractory group. ACC=anterior cingulate cortex; Put=putamen; 
Tha=thalamus; Hip=hippocampus; Amy=amygdala; IF=inferior frontal gyrus; MF=middle frontal gyrus; MT=middle temporal gyrus.
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