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the present study provides an overview of studies exam-
ining hippocampal volumes in nonpsychotic relatives of 
adult-onset schizophrenia patients. Findings have been 
inconsistent, with six studies reporting smaller hippo-
campal volumes in first-degree relatives compared with 
healthy subjects, suggesting familial/genetic liability (16, 
20–24). In contrast, five other studies failed to find any 
decrease in hippocampal volumes for unaffected siblings 
of adult patients (25–29) (Table 1). Studies in ultra-high-
risk individuals also address the question of whether 
hippocampal volume reductions could be familial/trait 
markers and whether the changes could take place before 
the onset of psychosis. In the present analysis, the studies 
are also inconsistent, with four showing that volume defi-
cits do not appear until after the onset of psychotic illness 
(30–33) and three finding ultra-high-risk patients to have 
decreased hippocampal volume (34–36). It is important to 
note that many subjects in these studies had various psy-
chotic symptoms and were exposed to typical or atypical 
antipsychotics at clinical dosages lasting from a few days 
to approximately 1 month, and thus the effect of antipsy-
chotics on hippocampal volume remains a confounding 
factor. As a whole, these studies suggest that hippocampal 
volumes may be differentially affected, depending on the 
stage and type of psychosis, but fail to provide convincing 

Several lines of research support the hippocampus 
playing a role in the pathogenesis of schizophrenia. The 
hippocampus is intricately involved in declarative learn-
ing and memory (1–3), novelty detection (4, 5), and estab-
lishing semantic associations (6), such that functional 
deficits can resemble cognitive abnormalities seen in 
schizophrenia. Anatomic brain imaging studies have 
consistently shown patients with schizophrenia to have 
bilateral hippocampal volume reductions (7–9), and post-
mortem studies have confirmed these findings along with 
reduced neuronal size (10–12).

Adolescence appears to be a unique period of brain 
development in schizophrenia (13, 14), and changes dur-
ing normal adolescence bring about hippocampal volume 
reduction (15). The mechanisms underlying hippocampal 
volume reduction in schizophrenia are unclear and could 
be related to genetic, environmental, antipsychotic medi-
cation, and/or illness-related factors (16, 17). To explore 
the contribution of a familial/genetic mechanism to the 
structural abnormalities, several studies have compared 
patients to their unaffected healthy siblings or other first-
degree relatives (18, 19).

The results from these studies, and thus whether a 
reduction in hippocampal volume represents a familial/
trait marker for schizophrenia, remain unclear. Table 1 in 
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Objective: Previous anatomic studies 
have established a reduction in hippo­
campal volume in schizophrenia, but few 
have investigated the progressive course 
of these changes and whether they are 
trait markers. In the present study, the au­
thors examined hippocampal volumes in 
relation to age for patients with childhood-
onset schizophrenia, their nonpsychotic 
healthy siblings, and healthy comparison 
subjects.

Method: Anatomic brain magnetic reso­
nance scans were obtained in childhood-
onset schizophrenia probands (N=89, 
198 scans), their nonpsychotic full siblings 
(N=78, 172 scans), and matched healthy 
comparison subjects (N=79, 198 scans) 
between the ages of 10 and 29 years. To­
tal, left, and right hippocampal volumes 
were measured using FreeSurfer software 

and analyzed using a linear mixed-model 
regression covarying for sex and intracra­
nial volume.

Results: Childhood-onset schizophrenia 
probands had a fixed reduction in hippo­
campal volumes (total, left, and right) 
relative to both nonpsychotic siblings and 
healthy comparison subjects, whereas 
there were no significant volumetric or tra­
jectory differences between nonpsychotic 
siblings and healthy comparison subjects.

Conclusions: Fixed hippocampal volume 
loss seen in childhood-onset schizo­
phrenia, which is not shared by healthy 
siblings, appears to be related to the 
illness. Decreased hippocampal volume 
is not strongly genetically related but 
represents an important intermediate 
disease phenotype.

Hippocampal Volume Development in Healthy Siblings 
of Childhood-Onset Schizophrenia Patients
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Table 1. Cross-Sectional Studies of Hippocampal Volume in Schizophrenia Patients, Healthy Siblings, and Unaffected Relatives

Study and Sample

Age (years)

Main FindingsMean/Range SD

Ho and Magnotta (20)a 1<3; 2<3 (left hippocampal volume, p=0.04).
1. Adult-onset schizophrenia patients (N=46) 13–28 4.5
2. Nonpsychotic relatives (N=46) 13–28 4.1
3. Healthy comparison subjects (N=46) 13–28 3.5

Honea et al. (24)b 2<3 (only in right hippocampal volume [p=0.003]); 
1 and 3: no difference.

1. �Patients with schizophrenia spectrum  
disorders (N=169) 36.39 9.46

2. Unaffected siblings (N=213) 36.5 9.75
3. Comparison subjects (N=212) 33.31 9.86

Goldman et al. (26) 2 did not differ from 1 or 3; 2<3 in post hoc analyses (left hippo-
campal volume, p=0.017, right hippocampal volume, p=0.006).

1. Adult-onset schizophrenia patients (N=169) 36.48 10.13
2. Discordant siblings (N=183) 36.38 9.60
3. Comparison subjects (N=221) 32.82 9.51

McDonald et al. (25) 2 did not differ from 3.
1. Adult-onset schizophrenia patients (N=24) 37.9 10.3
2. Relatives (N=32) 47.1 13.1
3. Comparison subjects (N=18) 32.8 5.0

van Haren et al. (21) 2<3 as main effect only (p=0.04); difference not significant 
after Bonferroni correction; no significant interaction reported.

1. Monozygotic concordant twin pairs (N=14) 34.36 8.48
2. Monozygotic discordant twin pairs (N=10) 36.70 13.81
3. Monozygotic comparison twin pairs (N=17) 38.06 10.38

Tepest et al. (22) 3<4 (p=0.003).
1. Adult-onset schizophrenia patients (N=12) 29.8 5.5
2. Affected siblings (N=13) 31.1 8.4
3. Unaffected siblings (N=13) 30.5 5.6
4. Comparison subjects (N=10) 24.4 3.5

Seidman et al. (16) 2<4 in left hippocampal volume (full sample); no significant 
differences reported for right  
hippocampal volume.

1. Simplex relatives (N=28) 41.9 12.7
2. Multiplex relatives (N=17) 38.9 10.6
3. Adult-onset schizophrenia patients (N=18) 43.2   8.3
4. Comparison subjects (N=48) 40.1 10.8

van Erp et al. (23) 2<3 (p=0.001).
1. Psychotic probands (N=72) 40.2 5.4
2. Nonpsychotic full siblings (N=58)c 40.7 5.9
3. Comparison subjects (N=53) 40.9 3.1

Narr et al. (28) 1<3 in left hippocampal volume (p=0.02); 2 did not differ 
from 4.

1. Monozygotic discordant twin pairs (N=10) 48.3 2.9
2. Dizygotic discordant twin pairs (N=10) 49.0 3.9
3. Monozygotic comparison twin pairs (N=10) 48.3 3.8
4. Dizygotic comparison twin pairs (N=10) 47.9 4.2

Baaré et al. (29) 1 and 2<3 and 4 as main effect only (p<0.05); no significant 
interaction reported.

1. Monozygotic discordant twin pairs (N=15) 35.11 10.31
2. Dizygotic discordant twin pairs (N=14) 35.67 10.77
3. Monozygotic comparison twin pairs (N=15) 35.62 11.35
4. Dizygotic comparison twin pairs (N=14) 35.12 10.26

Staal et al. (27) 2 did not differ from 3; no significant main effects or interac-
tions reported.

1. Adult-onset schizophrenia patients (N=32) 40.6 8.2
2. Unaffected siblings (N=32) 40.9 8.6
3. Comparison subjects (N=32) 40.3 9.3

a  Family members included second-degree relatives.
b  All schizophrenia patients were receiving medication treatment.
C  Twelve siblings had fetal hypoxia.
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evidence about the use of hippocampal volume as a famil-
ial/trait marker.

Childhood-onset schizophrenia, defined as onset of psy-
chotic symptoms before age 13 years and diagnosed using 
unmodified DSM-IV criteria, is a rare form of the illness that 
is continuous with its adult counterpart (13, 37) and shows 
a robust gray matter loss during adolescence that appears 
to be an exaggeration of the normal cortical gray matter 
developmental pattern (14, 38–41). We previously reported 
a moderate, nonprogressive reduction in hippocampal vol-
ume bilaterally (13, 42). Although there are salient volume 
reductions in the hippocampus associated with adult-onset 
schizophrenia, there have been no studies examining longi-
tudinal hippocampal volume change in either the siblings 
of our patients or relatives of adult-onset patients.

In the present study, we investigated longitudinal 
development of hippocampal volumes in a large sample 
of childhood-onset schizophrenia probands, their unaf-
fected healthy siblings, and healthy comparison sub-
jects, all examined prospectively during childhood and  
adolescence using a fully automated, whole brain seg-
mentation technique to determine hippocampal vol-
ume (43). Based on previous work, we hypothesized that 
hippocampal development in childhood-onset schizo-
phrenia patients would show a nonprogressive bilateral 
hippocampal volume reduction. We further hypothesized 
that healthy siblings of childhood-onset schizophrenia 
probands would also demonstrate smaller and progres-
sive reduction in hippocampal volume, and thus the tra-
jectory of hippocampal development could be a familial/
trait marker.

Method

Subjects

Childhood-onset schizophrenia patients were recruited 
nationwide and were diagnosed after inpatient observation 
that included a medication washout. Exclusionary criteria were 
medical or neurological illness, substance abuse, or an IQ <70 
prior to the onset of psychotic symptoms. Further details are 
described elsewhere (44). All patients, along with their full sib-
lings, were followed clinically with neurological rescan at 2-year 
intervals.

For this study, only childhood-onset schizophrenia patients 
(N=89 [198 scans]) and healthy full siblings of patients (N=78 
[172 scans]) with two or more successive scans were examined. 
Siblings were interviewed using structured psychiatric interviews 
for axis I (using either the Schedule for Affective Disorders and 
Schizophrenia [SADS] [45] or the Schedule for Affective Disor-
ders and Schizophrenia for School-Age Children [K-SADS] [46]) 
and axis II (using the Structured Interview for DSM-III Person-
ality Disorders [47]) diagnoses. Siblings were considered healthy 
if they were free of any schizophrenia spectrum diagnoses, 
which included schizophrenia, schizoaffective disorder, or any 
psychotic illness on axis I or paranoid, schizotypal, schizoid, or 
avoidant personality disorders on axis II (48).

Seventy-nine healthy comparison subjects (172 scans) were 
selected from a larger prospective study of normal brain devel-
opment and were matched for age, sex, and scan interval to the 
childhood-onset schizophrenia patients and healthy siblings. 
Only comparison subjects with two or more successive scans 

were included. As with siblings, comparison subjects were free of 
lifetime medical or psychiatric disorders as determined by means 
of clinical examination and standardized interview. Psychiatric 
illness in a first-degree relative was also exclusionary. Further 
details are described elsewhere (49).

Imaging Processing and Analysis

T
1
-weighted images with contiguous 1.5-mm slices in the axial 

plane were obtained using a three-dimensional spoiled gradient 
recalled echo sequence in the steady state. Imaging parameters 
were as follows: echo time=5 msec, repetition time=24 msec, flip 
angle=45°, acquisition matrix=256×192, number of excitations=1, 
and field of view=24 cm. Head placement was standardized as 
previously described (50).

The image files in DICOM (Digital Imaging and Communica-
tions in Medicine) format were transferred to a Linux workstation 
for analysis. Subcortical volumes were measured automatically 
with the FreeSurfer image analysis suite, which is documented 
and available online (http://surfer.nmr.mgh.harvard.edu/). A 
trained psychiatrist reviewed individual scans, and those with 
significant artifact or motion disturbance (childhood-onset 
schizophrenia group, N=7; healthy sibling group, N=4; healthy 
comparison group, N=4) were excluded from analysis. The auto-
mated procedures for subcortical volumetric measurements of 
different brain structures have been described previously (43, 51). 
This procedure automatically provides segments and labels for 
many brain structures and assigns a neuroanatomic label to each 
voxel in magnetic resonance imaging (MRI) volume on the basis 
or probabilistic information estimated automatically from a man-
ually labeled training set. Briefly, this processing includes motion 
correction and averaging of multiple volumetric T

1
-weighted 

images (when more than one is available), removal of nonbrain 
tissue using a hybrid watershed/surface deformation proce-
dure (52), automated Talairach transformation, segmentation of  
the subcortical white matter and deep gray matter volumet-
ric structures (including the hippocampus, amygdala, caudate, 
putamen, and ventricles) (43, 51), intensity normalization, tes-
sellation of the gray-white matter boundary, automated topology 
correction (53, 54), and surface deformation following intensity 
gradients to optimally place the gray-white matter and gray mat-
ter/CSF borders at the location where the greatest shift in inten-
sity defines the transition to the other tissue class.

The segmentation uses the following data to disambiguate 
labels: 1) the prior probability of a given tissue class at a specific 
atlas location, 2) the likelihood of the image intensity given the 
tissue class, and 3) the probability of the local spatial configura-
tion of labels given the tissue class. This technique has previously 
been shown to be comparable in accuracy to manual labeling  
(43) and has been demonstrated to show good test-retest  
reliability across scanner manufacturers and field strengths (55). 
However, all segmentations were visually inspected for accuracy 
prior to inclusion in the group analysis. Total hippocampal vol-
ume was calculated as the sum of the left and right hippocampal 
volumes for each study participant.

Statistical Analysis

Demographic differences between groups were tested using 
analysis of variance for continuous variables and chi-square tests 
of independence for categorical variables. To examine group dif-
ferences between the developmental trajectories of total, left, 
and right hippocampal volume measures, we used mixed-effect 
regression models. The dependent measures were individual hip-
pocampal volumes; fixed effects included age (centered at the 
sample average age of 17.58 years [SD=4.6]), group, group-by-age, 
intracranial volume, and sex. Random effects included an inter-
cept per person (to account for within-person dependence) and 
an intercept for a person nested within a family (to account for 
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within-family dependence). Hypotheses for model building were 
tested with F statistics to determine the order (cubic, quadratic, 
or linear) of the developmental growth curves. We graphed fitted 
regression lines for the middle 80% of the age range in our data 
set. Group differences in intercept (at the average age) and slope 
were tested using t tests.

Results

Demographic characteristics are shown in Table 2. The 
three study groups were well matched with respect to age, 
sex, and handedness. Across the entire study sample, there 
were significant group differences in each hippocampal 
volume measure at the average age (Table 3). Childhood-
onset schizophrenia patients had a significantly smaller 
(6%–7%) hippocampal volume (total, left, and right) rela-
tive to comparison subjects and healthy siblings. On the 
other hand, siblings and comparison subjects had com-
parable total, left, and right hippocampal volumes at the 
average age (Figure 1).

Longitudinal trajectories (slopes) of hippocampal vol-
ume for the three groups did not differ significantly. Each 
group had a negative linear volumetric trajectory over 
time, which was not significantly different from zero. Fur-
thermore, for the total and right hippocampal volumes, the 
childhood-onset schizophrenia group had qualitatively 
steeper volume loss over time compared with the other 
two groups, but the slopes for the trajectories between the 
groups did not differ significantly. When individual groups 

were divided by gender, no statistically significant differ-
ences in total, right, or left hippocampal volume emerged 
for either volume amount or slope of the trajectories.

Discussion

Healthy siblings of childhood-onset schizophrenia pro-
bands had no hippocampal volume deficits relative to 
healthy comparison subjects. However, childhood-onset 
schizophrenia patients showed bilateral fixed deficits in 
total hippocampus volumes. Similarly, the linear trajec-
tories (slopes) across age for total, left, and right hippo-
campal volumes in siblings as well as childhood-onset 
schizophrenia probands did not differ from those of 
healthy comparison subjects.

These findings extend our previous reports of fixed 
total hippocampal volume deficits in childhood-onset 
schizophrenia patients (13, 42) in a much larger sam-
ple. The volume deficits, 6%–7% at the average age, are 
larger than those seen in cross-sectional studies of adult 
schizophrenia (4%–5%) (17, 31), which is consistent  
with the clinical evidence that childhood-onset schizo-
phrenia represents a more severe phenotype of the ill-
ness. Since hippocampal volume deficits appear early in 
childhood-onset schizophrenia and are comparatively 
nonprogressive, these findings also support a static hip-
pocampal lesion suggested by the animal models of 
schizophrenia (56–59).

Table 2. Demographic Characteristics Among Childhood-Onset Schizophrenia Probands, Healthy Comparison Subjects, 
and Healthy Siblingsa

Magnetic Resonance 
Imaging

Childhood-Onset 
Schizophrenia  

Patients (N=89)
Healthy Comparison 

Subjects (N=79)
Healthy Siblings  

(N=78)

Analysis

N

Age (years)

N

Age (years)

N

Age (years)

Mean SD Mean SD Mean SD F df p

Scan 1 89 14.9 3.2 79 14.9 4.7 78 14.9 6.0 0.03 2, 243 0.99
Scan 2 51 17.3 2.6 63 16.9 3.7 44 18.7 6.8 2.17 2, 155 0.12
Scan 3 34 20.0 2.8 33 19.6 4.0 31 21.1 6.8 0.82 2, 95 0.44
Scan 4 14 22.7 2.9 14 21.2 2.2 14 23.0 6.2 0.75 2, 39 0.47
Scan 5 7 24.8 3.4 5 24.7 3.1 5 22.9 2.6 0.61 2, 14 0.55
Scan 6 3 27.6 1.1 4 28.3 3.8 0.09 1, 5 0.77
Total 198 17.5 4.2 198 17.3 4.9 172 17.9 6.9 0.061 2, 565 0.54
a � The gender composition (female/male) for the childhood-onset schizophrenia patients, healthy comparison subjects, and healthy siblings 

was 38/51, 28/51, and 39/39, respectively (c2=3.40, df=2, p=0.18).

Table 3. Magnetic Resonance Imaging Hippocampal Volumes (mm3) Among Childhood-Onset Schizophrenia Probands, 
Healthy Comparison Subjects, and Healthy Siblingsa

Hippocampal  
Region

Childhood-Onset 
Schizophrenia 

Patients (N=89)
Healthy Comparison 

Subjects (N=79)
Healthy Siblings 

(N=78) Analysis

Mean SD Mean SD Mean SD F df p

Left 4,221 419.63 4,477 470.33 4,435 396.89 14.52 2, 565 <0.001
Right 4,197 425.14 4,480 498.10 4,475 418.01 25.32 2, 565 <0.001
Total 8,411 807.35 8,953 944.34 8,902 790.54 20.81 2, 565 <0.001
a	Data were covaried for intracranial volume and gender at the mean centered age (17.58 years [SD=4.6]).
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Contrary to our a priori hypothesis, healthy siblings of 
childhood-onset schizophrenia probands showed no hip-
pocampal volume loss. Previously, mostly cross-sectional 
MRI studies in healthy siblings as well as first-degree rela-
tives have shown inconsistent findings (Table 1). Similarly, 
many studies of ultra high-risk individuals have also failed 
to show consistent hippocampal loss prior to the onset of 
psychosis (30, 32, 33, 60). Many of these studies, includ-
ing those of high-risk populations, have included patients 
who have some schizophrenia spectrum symptoms or 
have been exposed to antipsychotic medications, which 
could have resulted in some of the inconsistencies. In a 
separate pilot analysis, we attempted to address this issue 
by comparing hippocampal (total, left, and right) volumes 
in medication-naive siblings of schizophrenia spectrum 
patients (N=15 [24 scans]) with volumes in healthy com-
parison subjects (N=15 [24 scans]). The siblings, which 
were probably comparable to an ultra high-risk group with 
schizotypal symptoms, also failed to show hippocampal 
volume reduction (p=0.7 [unpublished data available 
upon request from A. Mattai]). Overall, these findings 
strongly suggest the state-/disease-dependent nature of 
hippocampal volume loss. Strengths of the present study 
are the large sibling cohort, which enabled the selection 
of truly healthy comparison subjects, and the longitudinal 
nature of the study, which strengthened the stability and 
significance of the findings.

The effects of antipsychotic medication on hippocampal 
volume have been addressed by a few studies. The single 
longitudinal study (N=107) showed unchanged anterior 
hippocampal volume in patients regardless of cumulative 
antipsychotic dose (61). A cross-sectional study (N=56) 
showed that atypical antipsychotics rather than haloperi-
dol were associated with larger hippocampal volumes 
after controlling for disease severity (62). On the other 
hand, studies of hippocampal volume in antipsychotic-
naive and minimally medicated first-episode schizophre-
nia patients showed that hippocampal volume deficits 
were present at the onset of schizophrenia prior to any 
treatment (9, 63). All of our patients were exposed to anti-
psychotic medications, but the volume deficits remained 
fixed throughout the age range, suggesting minimal medi-
cation influence at least on the developmental trajectory, 

aThe graphs depict group-by-age interaction effects. Images rep-
resent the progression of hippocampal volume for the middle 
80% of the data range, from age 12 to 24 years. Mixed-model 
linear regression for the total, left, and right hippocampal vol-
umes are shown. Pairwise group differences in total hippocam-
pal volume (top) at the centered age (17.58 years [SD=4.6]) were 
statistically compared using t tests. Statistically significant differ-
ences in volume were found when comparing the childhood-onset 
schizophrenia group with healthy comparison subjects (t=5.53, 
df=229.90, p<0.001) and the childhood-onset schizophrenia group 
with healthy siblings (t=-4.96, df=236.40, p=0.004). There were 
no statistically significant group differences in slope for any of the 
volume measures. Pairwise group differences in left hippocampal 
volume (center) at the centered age (17.58 years [SD=4.6]) were 

statistically compared using t tests. Statistically significant differ-
ences in volume were found when comparing the childhood-onset 
schizophrenia group with healthy comparison subjects (t=5.18, 
df=227.37, p<0.001) and the childhood-onset schizophrenia group 
with healthy siblings (t=-4.27, df=234.51, p=0.006). There were no 
statistically significant group differences in slope for any of the vol-
ume measures. Pairwise group differences in right hippocampal 
volume (bottom) at the centered age (17.58 years [SD=4.6]) were 
statistically compared using t tests. Statistically significant differ-
ences in volume were found when comparing the childhood-onset 
schizophrenia group with healthy comparison subjects (t=5.41, 
df=232.08, p<0.001) and the childhood-onset schizophrenia group 
with healthy siblings (t=-5.25, df=239.18, p=0.001). There were 
no statistically significant group differences in slope for any of the 
volume measures.

Figure 1. Longitudinal Trajectories (Slopes) of Total, Left, 
and Right Hippocampal Volumes in Childhood-Onset 
Schizophrenia Probands, Their Healthy Siblings, and 
Healthy Comparison Subjectsa
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which we have also seen in the cortex (64). Although the 
effect of medications cannot be definitively ruled out with 
these observations, combined with the lack of volume 
loss in siblings, they support evidence that medications 
have minimal effect on hippocampal volume loss. A direct 
comparison of medicated and medication-naive child-
hood-onset schizophrenia patients may address this issue 
more definitively, but drug-naive childhood-onset schizo-
phrenia patients are almost impossible to recruit.

Postmortem work investigating morphometric hip-
pocampal changes in schizophrenia suggests that the ill-
ness reduces hippocampal neuronal size. Benes et al. (12)  
measured pyramidal neuron size in the posterior hip-
pocampus and found reductions of 13%–18% in regions 
CA1–CA4 in schizophrenia patients relative to comparison 
subjects. Correction for the effects of age, fixation inter-
val, and neuroleptic exposure did not alter the results. 
Similarly, Arnold (65) reported reductions in neuronal 
size in hippocampal subfields that mediate interactions 
with the cortex, thus possibly altering the neural circuits 
(66). Processes occurring during embryonic development 
and early childhood, such as neuronal migration, neuron 
enlargement and differentiation, and apoptosis in brain 
maturation, all have some bearing on hippocampal cyto-
architecture and neuronal arrangement (65). While it is 
not clear which of these factors may cause volume loss 
in the hippocampus, the nature of these neuropathologic 
changes suggests that at least part of the hippocampal dis-
ease process occurs during early development.

Given that the primary development of the brain occurs 
during fetal life, adverse environmental variables in early 
life could affect hippocampal development. Across envi-
ronmental variables, obstetrical complications are one of 
the strongest predictors of risk for schizophrenia (67–70). 
There is persuasive evidence to suggest that obstetri-
cal complications, particularly perinatal hypoxia and 
prenatal infections, are related to smaller hippocampal 
volumes in schizophrenia (71, 72). Furthermore, in ani-
mal models, prenatal- and birth-related hypoxic insults 
have been demonstrated to result in hippocampal  
neuron damage and a reduction in hippocampal cell 
number (73, 74).

Studies of hippocampal volume in monozygotic and 
dizygotic twins discordant for schizophrenia have also 
bolstered support for the idea that hippocampal volumes 
are differentially modulated by environmental factors to 
a greater degree when compared with healthy individuals 
(75, 76). However, a small retrospective chart study found 
no evidence for increased obstetrical risk in childhood-
onset schizophrenia versus sibling comparison subjects 
(77). Collectively, such work highlights that unique envi-
ronmental events can significantly influence hippocam-
pal volume in patients with schizophrenia.

A model of the developmental pathology of the hippo-
campus in childhood-onset schizophrenia could consist 
of an early environmental risk factor, such as perinatal 

hypoxia or prenatal infections, imparting a constitutional 
vulnerability to the hippocampus. Studies have shown that 
the hippocampus is particularly susceptible to damage as 
a result of stress (78, 79). During early adolescence, the 
hippocampus regulates the hypothalamic-pituitary-adre-
nal axis that releases cortisol and consequently augments 
dopamine activity in certain brain regions, including the 
mesolimbic system (80, 81). Increased stress could lead 
to an increased demand placed on the hippocampus, 
eventually leading to an exaggerated response to stress 
and more hippocampal damage in a positive feedback 
system. Given the pronounced prefrontal cortical deficits 
seen in childhood-onset schizophrenia (38), the prefron-
tal cortex may have limited ability to take over functions, 
such as working memory, from the hippocampus, further 
increasing functional demands and leading to hippocam-
pal damage. This framework could explain a hippocampal 
diathesis-stress model in which normal maturational pro-
cesses and exaggerated responses to early stress lead to 
abnormal hippocampal development that could be static 
with continued illness burden.

Our findings have several broad-ranging implica-
tions in terms of prevention and treatment. First, given 
the potential significant environmental contribution 
to hippocampal volume in schizophrenia, measures to 
decrease exposure to the environmental influence could 
result in a reduction in the incidence of illness in the 
population. For example, Suvisaari et al. (82) found that a 
decline in bacterial illnesses and initiation of immuniza-
tion programs may have led to a decline in the incidence 
of schizophrenia in Finland since the 1950s. In addition, 
prenatal and perinatal monitoring may also decrease the 
risk of schizophrenia in some genetically at-risk indi-
viduals (83). As hippocampal pathology likely begins 
and progresses in early brain development, measures 
to attenuate or reverse volume loss should be initiated 
early. The hippocampus is one of few brain structures 
with the ability to generate new neurons throughout its 
life (84). Although there is limited work linking schizo-
phrenia to decreased hippocampal neurogenesis or on 
whether normalization of neurogenesis would improve 
atrophy (85), recent investigations suggest that exercise 
may promote hippocampal plasticity and improve mem-
ory (86, 87). While many obstacles need to be overcome, 
future translational studies should focus on early inter-
ventions, possibly in the fetal period, as a way to improve 
hippocampal development and potentially prevent or 
delay onset of illness.

A major limitation to this study is that we did not inves-
tigate hippocampal shape abnormalities that may have 
reflected on heterogeneous changes within the hippocam-
pus. Shape and subregional analyses of the hippocampus 
within this population are ongoing. Another limitation of 
the study is the unknown bias of national recruitment for 
this very rare patient population that may favor healthy 
families and thus a population with lower genetic risk. 



mattai, hosanagar, Weisinger, et al.

Am J Psychiatry 168:4, April 2011		 ajp.psychiatryonline.org	 433

Nonetheless, this study highlights that hippocampal defi-
cits are not strongly related to genetic factors and may 
represent an important intermediate disease phenotype 
in childhood-onset schizophrenia.
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