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memory impairments, such as individuals with Alzhei-
mer’s disease (17), normal aging (18), or epilepsy (19). 
More recently, the presence of hippocampal dysfunction 
has become apparent in some psychiatric conditions, 
including depression (20), posttraumatic stress disorder 
(21), drug abuse (22), and now schizophrenia (23–25). In 
schizophrenia, the association between dysfunction of the 
hippocampus and manifestations of the illness has be-
come convincing, with evidence of altered function devel-
oped in many laboratories (26–30). The substantial growth 
in fundamental knowledge of normal hippocampal anato-
my and physiology has invited novel formulations of hip-
pocampal dysfunction in schizophrenia. In this article, we 
review the literature documenting hippocampal impair-
ment in schizophrenia, and we propose how known struc-
tural and molecular changes may give rise to functional 
defi cits in the syndrome.

The Hippocampal Formation: A 
Structure Specialized for Conjunctive 
Memory Formation and Pattern 
Completion

The integrity of the hippocampal formation is important 
for declarative memory but not for other kinds of memory 
(e.g., skill and habit memory, classical conditioning, and 

The unique anatomy of the hippocampus distinguish-
es it in animal and human brains (Figure 1). Its role came 
abruptly to the attention of the larger scientifi c world 
in the early 1950s when Henry Molaison, at age 27, had 
a bilateral medial temporal lobe resection to treat an in-
tractable seizure disorder. While the operation success-
fully brought his seizures under control, it left Molaison 
without the ability to make new declarative memories 
(1, 2). While his amnesia was particularly dense because 
of the extensive nature of his resection, conditions typi-
cally involving less extensive hippocampal damage, such 
as medial temporal lobe stroke or hippocampal sclerosis 
(3), were subsequently also associated with declarative 
memory loss. These untoward human conditions comple-
ment data from animal models (4, 5) that demonstrate the 
dependence of declarative memory—memory for events 
and facts—on the hippocampus proper and surround-
ing medial temporal lobe cortex. These observations have 
motivated several generations of scientists to examine the 
role of the hippocampus in memory (5–16); this study has 
advanced knowledge to support the idea that the hippo-
campus has a discrete role in normal mnemonic function 
and demonstrates pathology in many human diseases of 
memory.

The clinical implications of hippocampal damage were 
initially examined in populations demonstrating frank 
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 The hippocampal formation is one of the 
most extensively studied regions of the 
brain, with well-described anatomy and 
basic physiology; moreover, aspects of hu-
man memory mediated by the hippocam-
pus are well characterized. In schizophre-
nia, alterations in hippocampal anatomy, 
perfusion, and activation are consistently 
reported; impairments in declarative 
memory function, especially in the fl ex-
ible use of event memories (e.g., in the 
service of memory-based inference), are 
common. Postmortem molecular changes 
suggest a selective reduction in glutamate 
transmission in the dentate gyrus and in its 
efferent fi bers, the mossy fi ber pathway. A 
reduction in dentate gyrus glutamatergic 
output and in its information processing 
functions could generate two co-occur-
ring outcomes in the hippocampus: 1) a 
change in homeostatic plasticity processes 

in cornu ammonis 3 (CA3), accompanied 
by increased activity due to reduced af-
ferent stimulation from the dentate gyrus 
onto CA3 neurons, a process that could 
increase the pattern completion functions 
of CA3, and 2) the loss of mnemonic func-
tions specifi c to the dentate gyrus, namely 
pattern separation, a change that could 
increase the prevalence of illusory pattern 
completion and reduce discrimination 
between present and past experiences in 
memory. The resulting increase in “run-
away” CA3-mediated pattern completion 
could result in cognitive “mistakes,” gen-
erating psychotic associations and result-
ing in memories with psychotic content. 
Tests of this model could result in novel 
approaches to the treatment of psychosis 
and declarative memory alterations and 
in novel animal preparations for basic 
schizophrenia research.

The Hippocampal Formation in Schizophrenia

Mechanisms of Psychiatric Illness
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organized representational system that information from 
the neocortex converges on the hippocampus, wherein it 
is rapidly bound in the form of a conjunctive representa-
tion—that is, a fl exible representation that captures the 
co-occurrence of the multiple features that constitute an 
event. While each anatomic region in this hierarchy likely 
plays a different role in information processing and mne-
monic function, their collective computations and inter-
actions enable declarative memory (37, 41–43).

Within the hippocampus, pyramidal layers are densely 
packed with glutamate-containing excitatory neurons. 
Inhibitory interneurons containing γ-aminobutyric acid 
(GABA) lie within the polymorphic layer and send their 
processes to modulate excitatory cell fi ring. The excitatory 
glutamate projections within the hippocampus have a 
low fi ring threshold, endowing the structure with a great 
capacity for plasticity, advantaging learning and memory 
functions. CA3 has extensive networks of recurrent col-
lateral projections, connections that are thought to be the 
anatomic substrate for the conjunctive encoding and pat-
tern completion processes central to declarative memory 
(12, 31). Moreover, the dentate gyrus and, to a lesser ex-
tent, CA3 are thought to play a fundamental role in me-
diating pattern separation, wherein novel events that are 
similar to, but not exactly the same as, past events are es-
tablished as unique (i.e., pattern-separated) hippocampal 
representations (38, 44). We next briefl y discuss each of 
these computations.

Conjunctive Encoding

The neocortex consists of multiple processing regions 
that represent specifi c classes of features, including 
stimulus attributes, spatial confi gurations, and domains 
of meaning. During the early stages of event processing, 
external inputs and internal thoughts give rise to mul-
tiple neocortical representations that code for the event’s 
features; the specifi c neocortical structures recruited 

priming) (1, 13, 14, 31). The hippocampus is responsible for 
1) the fast binding of inputs from multiple neocortical re-
gions (conjunctive encoding), wherein the array of features 
that constitute an event are bound into an integrated, but 
fl exibly addressable, memory trace (11, 12, 15), and 2) the 
subsequent reinstatement (retrieval) of previously learned 
input patterns (12, 32–34). At retrieval, conjunctive repre-
sentations may permit associative recognition, inferential 
reasoning, and event recollection through pattern comple-
tion mechanisms that result in retrieval of an extended rep-
resentation from partial input. The anatomy of the hippo-
campus exquisitely complements its function (35).

The medial temporal lobe consists of the hippocam-
pal formation—the cornu ammonis 1–3 (CA1–3), dentate 
gyrus, and subiculum—and the surrounding perirhinal, 
parahippocampal, and entorhinal cortex; its component 
structures are arranged hierarchically and topographically 
(35–37) (Figure 2). The hippocampal formation is a con-
vergence zone, wherein unimodal and polymodal neo-
cortical outputs ultimately come together. Specifi cally, 
the outputs from polymodal association and sensory neo-
cortex provide the dominant projections to the perirhinal 
and parahippocampal cortex, which in turn project to the 
entorhinal cortex. The primary projections to the hippo-
campus come from the entorhinal cortex 1) through the 
perforant pathway to the dentate gyrus and 2) through di-
rect projections to hippocampal subfi elds CA3 and CA1. 
The perforant path is the fi rst synapse in the hippocampal 
formation’s largely unidirectional trisynaptic pathway: the 
entorhinal cortex (layer II) to the dentate gyrus to CA3 to 
CA1 (39, 40). It is through this hierarchical, successively 

FIGURE 1. Tissue From a Human Hippocampus, With Nissl 
Staininga
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DG – Dentate gyrus

EC – Entorhinal cortex

Sub – Subiculum

a The medial temporal lobe includes the entorhinal cortex, which 
serves to channel information from regions of the parahippocam-
pal gyrus into the hippocampus proper through the perforant path-
way, projecting to the dentate gyrus; the granule cell mossy fi ber 
pathway from dentate gyrus projects to pyramidal neurons of CA3, 
and CA3 pyramidal neurons project to CA1 via the Schäffer collateral 
pathway. The subiculum is the output region of the hippocampus.

FIGURE 2. Connectivity Within the Hippocampusa
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a Connectivity is characterized by the distinctive one-way excitatory 
projection from the entorhinal cortex to the dentate gyrus to CA3 
to CA1, called the trisynaptic pathway (blue). In addition, the en-
torhinal cortex also projects to CA3 and CA1 directly and indepen-
dently. CA3 has a rich recurrent collateral network that strongly 
connects the CA3 pyramidal neurons with each other and is be-
lieved to participate in the memory functions of the hippocampus. 
Figure adapted from reference 38 by permission of the authors 
and John Wiley and Sons.
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of the item’s encounter (e.g., source memory) can be later 
recollected (59, 63). These fi ndings complement the data 
on the CA3-NR1 knockout mice, as well as other evidence, 
in implicating hippocampal subfi elds as differentially 
critical for conjunctive encoding.

Pattern Completion and Pattern Separation

Hippocampal-dependent conjunctive representations 
are thought to separately code the features or items of an 
event, maintaining the compositionality of the elemen-
tal representations and organizing them in terms of their 
relations to one another (12, 31, 64, 65). Critically, the 
compositional nature of conjunctions allows for reactiva-
tion of such representations from partial input (pattern 
completion) (11, 12, 33), a process thought to underlie 
event recollection. From the complementary learning 
systems perspective (12, 15), the hippocampus differen-
tially supports the formation and subsequent retrieval 
of item-item and item-context conjunctions, rather than 
memory for individual event features (items) per se (11, 
57, 58, 66, 67) .

At retrieval, conjunctive representations may permit as-
sociative recognition (e.g., recognizing which two stimuli 
had previously co-occurred), inferential reasoning (e.g., 
deciding that A goes with C because each had previously 
independently co-occurred with B), and recollection (e.g., 
source memory) through pattern completion mechanisms 
that result in retrieval of an extended representation from 
partial input. Pattern completion may critically depend 
on mechanisms in CA3, CA1, and the subiculum and on 
their interactions. For example, CA3-NR1 knockout mice 
demonstrate impaired retrieval when cued by a partial set 
of inputs, as evidenced by a failure to reactivate encoding 
patterns in CA1 (68). Pattern completion in CA3 is thought 
to be triggered by inputs arriving from the entorhinal cor-
tex, such that when these inputs are suffi ciently similar to 
part of a previously encoded event, the input can serve to 
reactivate the stored conjunctive pattern (38).

Pattern completion can be viewed as a hippocampal 
attractor state that is favored because of prior event en-
coding. A challenge for an effective memory system is to 
be able to 1) pattern complete when the input was indeed 
part of a prior event that should be recollected, on the one 
hand, and 2) establish a distinct memory representation 
when the input is similar to, but different from, the past, 
on the other hand. Because the entorhinal cortex projects 
both to the dentate gyrus and to CA3, it is thought that the 
dentate gyrus may enable this latter critical function—
namely, it is thought that the pathway from the entorhinal 
cortex to the dentate gyrus to CA3 differentially supports 
the pattern separation of similar events, such that their 
representations in CA3 are distinct (38). The architecture 
of the dentate gyrus as well as the nature of its projections 
to CA3 appear well suited on computational principles to 
support pattern separation (38), and electrophysiological 
data on animals (44) and fMRI data on humans (69) have 

during event processing are a function of the features of 
the episode and the allocation of attention. The outputs 
from these neocortical regions project to the medial tem-
poral lobe, ultimately converging on the hippocampus, 
which rapidly forms a conjunctive trace that captures 
the relations between the event features. In this manner, 
episodic encoding requires convergent functions of pos-
terior neocortical and frontoparietal networks (which 
interact to support the representational processing of 
events in a goal-directed manner) and regions of the 
medial temporal lobe (which are responsible for form-
ing durable mnemonic representations of the features 
[items] of the event and for creating a bound represen-
tation in which the event’s features are linked together) 
(45–48).

By defi nition, one-shot learning is necessary for epi-
sodic memory (11, 12, 31, 49), which enables organisms 
to later recognize previously encountered stimuli and to 
later recollect details of specifi c past events (5, 8, 11, 13, 
31). Given the architecture of the intrahippocampal sub-
fi elds, attention has focused on CA3 and its interactions 
with the entorhinal cortex, the dentate gyrus, and CA1. In 
particular, conjunctive encoding is thought to depend on 
the widespread collateral connections within CA3, which 
constitute a powerful autoassociative learning mechanism 
that allows for the rapid binding of co-occurring event 
inputs distributed to multiple CA3 neurons. Supportive 
evidence for the critical role of CA3 comes from studies 
of mice with deletion of N-methyl-D-amino (NMDA) re-
ceptor subunit 1 (NR1) restricted to CA3 cells (CA3-NR1 
knockout mice), which demonstrate impaired learning on 
tasks that require the rapid acquisition of conjunctive, or 
relational, information (50–52).

In humans, understanding of medial temporal lobe 
function has partially come from relating the neural re-
sponses triggered by an event (e.g., event-related poten-
tials or blood-oxygen-level-dependent [BOLD] activa-
tion shown by functional magnetic resonance imaging 
[fMRI]) to the memory behavior arising from the event 
(e.g., memory formation and subsequent remembering) 
(53–56). For example, encoding activation, as detected by 
fMRI, occurs in response to novel stimuli in the hippo-
campus and surrounding perirhinal, parahippocampal, 
and entorhinal cortex. Moreover, later discrimination be-
tween novel and previously encountered items depends 
at least partially on the strength of the encoded memory, 
which varies in a continuous manner and seems to un-
derlie the subjective perception of stimulus familiarity 
(Figure 3) (58–63). The hippocampus, perirhinal cortex, 
and parahippocampal cortex are hypothesized to support 
complementary forms of learning during novel stimulus 
processing; whereas the perirhinal cortex is more active 
while processing novel items that are subsequently recog-
nized than while processing items that are subsequently 
forgotten, the hippocampus proper is more active while 
processing items about which specifi c contextual details 
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important to the focus of this article are psychosis and 
cognitive dysfunction, especially in memory dimensions. 
Psychosis has always been the defi ning feature of schizo-
phrenia (73) and is its most fl orid manifestation (74). 
While most clinicians today rarely see psychotic symp-
toms in their full manifestation, the historical reports of 
psychotic illness (75) and fi rst-person accounts (76, 77) 
provide a stark reminder of its impact on function. Cog-
nitive dysfunction in schizophrenia has been considered 
a distinct complex only recently; its specifi c dimensions 
have been extensively examined (78–83). Individuals with 
schizophrenia show a generalized compromise in cogni-
tive performance, with certain categories of cognition 
showing particular impairment, including visual and ver-
bal declarative memory, working memory, and processing 
speed (80, 82–88).

Declarative memory is one of the most consistently 
impaired functions in schizophrenia (26, 83, 85, 89–91). 
Abnormal performance on memory tasks that depend on 
conjunctive representations has been repeatedly report-
ed, including 1) impairments in the fl exible (inferential) 
use of learned knowledge (92–94) and 2) greater defi cits 

yielded initial support for the putative role of the dentate 
gyrus in establishing pattern-separated hippocampal rep-
resentations.

Schizophrenia and the Hippocampal 
Formation

The anatomy of schizophrenia involves multiple cere-
bral regions, including the medial temporal lobe. Cogni-
tive functions mediated by the medial temporal lobe—
notably declarative memory (30)—are compromised in 
individuals with the illness and in relatives at genetic risk. 
Support for hippocampal involvement in the illness, once 
suggestive (70, 71), is now compelling (23).

Schizophrenia Phenomenology

Schizophrenia can be conceptualized as an illness 
of component symptom complexes that are largely in-
dependent core phenotypes, each with its own clinical 
manifestations, pathophysiology, and risk genes (72), 
an orientation predicted by the early formulations of 
Kraepelin and Bleuler. Two critical symptom components 

FIGURE 3. Suppression of Activation in the Medial Temporal Lobe Cortex With Repetition of Stimulia
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msec after stimulus onset. Figure adapted from reference 57 by permission of Elsevier.
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schizophrenia patients performing declarative memory 
tasks, often with dysfunction present in the left hemi-
sphere (97, 99, 132, 138–145). In particular, a reduction in 
hippocampal activation has been observed during tasks 
assessing verbal memory with temporal context, shallow 
and deep word encoding, transitive inference with over-
lapping patterns, relationships between visual stimuli, 
arbitrary pair encoding, and word pair novelty. As such, 
BOLD hippocampal activations during conjunctive mem-
ory tasks (those previously linked with activation of the 
medial temporal lobe in healthy individuals) are reduced 
in patient groups compared with healthy subjects (92, 138, 
140, 145, 146). In addition, there is a blunting in schizo-
phrenia of the increase in posterior hippocampal activa-
tion induced by smooth pursuit eye movement (147); the 
nicotine-induced reduction in fMRI BOLD activity seen in 
a healthy comparison hippocampus, which is thought to 
be associated with activation of the hippocampal α

7
 cho-

linergic receptor (148), is similarly blunted in schizophre-
nia (149). This observation supports a previous fi nding 
of reduced nicotine receptors in the postmortem schizo-
phrenia hippocampus (150) and extends these molecular 
observations to function. At a network level, examinations 
of interactions between the medial temporal lobe and the 
prefrontal cortex have consistently found alterations in 
connectivity between these two regions in schizophrenia 
(130, 133, 151), raising questions about the interdepen-
dence of their respective pathologies. Taken as a whole, 
fMRI BOLD activation studies consistently implicate al-
terations in functional activation in the hippocampus in 
schizophrenia, especially during tasks dependent on con-
junctive memory.

Neurochemistry and histology. The imaging studies we 
have reviewed here that show changes in in vivo hippo-
campal activity are consistent with a body of postmor-
tem schizophrenia data showing cellular and molecular 
tissue abnormalities in the medial temporal lobe (106). 
While the study of synaptic plasticity markers (152–154), 
proteins associated with putative risk genes (155, 156), 
glutamate receptors and their intracellular signaling 
markers (105, 157–159), and other proteins associated 
with glutamate transmission (160, 161) has broadened 
the literature on hippocampal abnormalities in schizo-
phrenia, it has not resulted in evidence of a unifi ed mo-
lecular pathology. On the other hand, several fi ndings 
from human tissue studies have implicated hippocampal 
subfi elds, especially the dentate gyrus, in schizophrenia; 
these make a cogent case for regional glutamatergic pa-
thology within the medial temporal lobe, with differential 
impairment localized to the dentate gyrus. In particular, 
Reif et al. (162, 163) reported a reduction in Ki-67, a mark-
er of adult neurogenesis in the dentate gyrus in schizo-
phrenia, suggesting that the generation of new neurons 
in the dentate gyrus may be reduced in the illness, and 
such a reduction is plausibly associated with changes in 
the schizophrenia risk gene DISC-1 (164) or NRG1 (165, 

in recall relative to item recognition (95), memory for the 
source or context of an experience relative to item memo-
ry (96), and recognition based on the recollection of event 
details relative to perceived item familiarity (97). Altera-
tions in declarative memory performance are associated 
with reductions in hippocampal volume and functional 
activation during memory tasks (98, 99). In persons with 
ultra-high risk for developing psychosis, it is the verbal 
memory index (because of lower logical memory scores) 
that identifi es those who go on to develop psychosis (100). 
It is also the case that unaffected relatives show poorer 
memory performance than comparison subjects on a 
range of memory tests (101).

Hippocampal Characteristics in Schizophrenia

Early speculations about changes in the hippocampal 
formation among people with this illness were based on 
behavioral evidence (70) and anatomy (102, 103). Func-
tional alterations (104), reports of cellular and molecu-
lar pathology (105–108), and sensitivity to antipsychotic 
drugs (109) subsequently converged to confi rm these ear-
ly speculations, consistent with the extensive evidence of 
declarative memory dysfunction.

Anatomy. Hippocampal size is reduced bilaterally in schizo-
phrenia (110–113), with volumetric reductions found more 
often for the hippocampus than for any other brain region 
(114, 115). Hippocampal volume reduction is seen as early 
as the fi rst psychotic episode (116, 117) and has been report-
ed to progress to some degree with the illness (118, 119). The 
volume alteration appears to be independent of the actions 
of antipsychotic drugs (120) and may be greater in probands 
without a family history of schizophrenia (121). It has been 
detected in nonpsychotic siblings of schizophrenia pro-
bands (122), in persons at risk for schizophrenia (123, 124), 
as well as in people with psychotic bipolar disorder (125). 
Studies of hippocampal shape have detected regional ab-
normalities of contour in affected persons (126) and in well 
siblings of schizophrenic probands (122). These observa-
tions are consistent with a hippocampal alteration that is 
modestly progressive over the course of illness, is present in 
unaffected family members, and may be more severe in the 
face of low genetic load.

Perfusion. Increases in basal cerebral perfusion in the hip-
pocampus were identifi ed in early, lower-resolution im-
aging studies (127–131). More recent data (109, 132–135), 
including cerebral blood volume measures (136), similarly 
indicate that basal perfusion is elevated in the medial 
temporal lobe, particularly in medication-free individuals 
with schizophrenia, and further demonstrate that perfu-
sion is partially “normalized” by antipsychotic treatment 
(109). The increase in regional perfusion may correlate 
with the magnitude of psychosis in medication-free pa-
tients (137).

Task-associated activation. Functional MRI BOLD activa-
tion patterns in the medial temporal lobe are abnormal in 
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microarray analysis and reported reduced gene expres-
sion coding for proteins involved in metabolism in the 
dentate gyrus. Along with fi ndings of other molecular 
changes in the dentate gyrus in schizophrenia (172, 173), 
extant postmortem data make a cogent case for the den-
tate gyrus being a prominent hippocampal site of unique 
molecular pathology.

As noted earlier, the dentate is the gateway structure of 
the trisynaptic pathway and is thus positioned to critically 
infl uence the downstream function of the hippocampus 
proper, especially CA3. Initial evidence revealing differ-
ential functions of the hippocampal subfi elds—revealed 
by electrophysiology (174), focal lesions in rodents (175), 
and regionally selective genetically manipulated animals 
(175–178)—suggests that distinct behavioral syndromes 
may accompany dysfunction of each subfi eld (179).

166). Intriguingly, recent data suggest that intact neuro-
genesis in the dentate gyrus is critical for effective pattern 
separation (167), raising the possibility that reduced neu-
rogenesis in schizophrenia could result in an imbalance 
between pattern completion and pattern separation (a 
point to which we will return later). Kolomeets, Uranova, 
and colleagues, using electron microscopy (168, 169), de-
scribed a reduction in the number of synapses of dentate 
gyrus mossy fi bers onto CA3 pyramidal neuronal spines 
in postmortem schizophrenia tissue, a fi nding support-
ing a reduction in transmission effi ciency of mossy fi ber 
synapses from the dentate gyrus onto CA3 neurons. In 
addition, NR1 mRNA—the obligate subunit of the NMDA 
receptor—is selectively reduced within the hippocam-
pus in the dentate gyrus (105, 157, 159, 170) (Figure 4). 
Altar et al. (171) isolated dentate gyrus granule cells for 

FIGURE 4. Evidence of Selective Decrease in Excitatory Transmission From the Dentate Gyrus to CA3 in Schizophreniaa

A) Dentate Gyrus Neurogenesis B) Mossy Fiber Synapses in CA3

C) NR1 mRNA in Hippocampal Subfields D) NR2A/NR1 and NR2B/NR1 Ratios in CA3
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gest specifi c pathological features of the hippocampus in 
schizophrenia: 1) a consistent, albeit small, reduction in 
hippocampal volume, 2) an increase in hippocampal basal 
perfusion, 3) an activation defi cit during declarative mem-
ory tasks that depend on conjunctive representations (pos-
sibly related to elevated basal activity), and 4) a reduction in 
dentate gyrus neurogenesis and efferent excitatory signal-
ing from dentate gyrus granule cells. A number of these in 
vivo alterations correlate with symptoms of the illness (180, 
181) and thus appear functionally relevant. Meanwhile, the 
conceptualization of schizophrenia is evolving, moving 
away from categorical distinctions and toward a dimen-
sional component symptom formulation (72), encouraging 
a model separating psychosis and cognitive pathology. The 
genetic etiologies of schizophrenia are multiple and com-
plex (182–187), and the neurochemical pathways impli-
cated in symptom formation have become more varied (24, 
28, 188–190) yet no more certain. At the same time, cogni-
tive neuroscience is providing a rich foundational literature 
within which to understand the functional neurobiology of 
schizophrenia through learning and memory models. We 
propose a formulation of hippocampal processes in schizo-
phrenia, guided by models of learning and memory.

The proposed model is based on evidence of a signifi cant, 
but localized, reduction in glutamatergic transmission with-
in the dentate gyrus and in its efferent pathways (105, 157, 
159, 163, 168, 170, 173), an idea consistent with a subfi eld-
specifi c, hypoglutamatergic state in the medial temporal 
lobe in schizophrenia (191–193). We suggest that the den-
tate gyrus, situated at the proximal end of the trisynaptic 
pathway, may generate two co-occurring outcomes conse-
quent to a reduction in its excitatory efferent transmission: 
fi rst, it may alter the plasticity characteristics of its target 
region, CA3, lowering the threshold in that subfi eld for long-
term potentiation; second, it may reduce the functional 
contribution of the dentate-to-CA3 pathway to hippocam-
pal memory computations, diminishing dentate-mediated 
pattern separation and promoting CA3-mediated pattern 
completion (Figure 5). The processes that mediate both of 
these classes of outcomes have been previously studied in 
human, animal, and tissue systems. Thus, markers of both 
may be tested in living humans, in postmortem brain tissue, 
and in simplifi ed animal models, by focusing on molecular 
markers of long-term potentiation in CA3 tissue, reduced 
glutamate transmission in the dentate gyrus, and reduced 
pattern separation mnemonic function, in vivo.

Examining Plasticity Characteristics 
in Hippocampal Subfi elds

Long-term potentiation is a process of synaptic reor-
ganization, triggered by NMDA receptor (NMDAR) acti-
vation, accompanied by increases in postsynaptic Ca2+ 
concentrations, resulting in activity-dependent synaptic 
strengthening; it is thought to represent the cellular basis 
of long-term memory (194–196). Long-term potentiation 
is known to adapt as a function of the prior activity level 

A Model of Hippocampal Dysfunction 
in Schizophrenia

What could be a parsimonious model of hippocampal 
dysfunction in the illness? The studies just reviewed sug-

FIGURE 5. Simplifi ed Hippocampal Circuit Subserving De-
clarative Memorya
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a This circuit (part A) is well studied and is the basis for the model of 
psychosis as a disorder of learning and memory. We propose that 
in psychosis (part B), reduced glutamatergic transmission in the 
dentate gyrus is the basis for reduced pattern separation function 
in schizophrenia and, furthermore, serves to generate an increase 
in long-term potentiation in CA3 and greater pattern completion 
function, including the production of psychotic thoughts and the 
encoding of the psychotic productions as normal memory.
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this model include fi ndings of an increase in NR2B- versus 
NR2A-containing NMDARs, an increase in phosphoryla-
tion of the  GluR1 subunit of the AMPAR (indicating an in-
crease in AMPARs at the synapse), an increase in PSD-95 
and/or SAP-102 in postsynaptic membrane, increases in 
dendritic spines, and—in vivo—subfi eld-specifi c increas-
es in cerebral perfusion measures. At the same time, the 
proposed model would predict reduced glutamate trans-
mission markers in the dentate gyrus; fi ndings including 
reduced NR1, decreases in new granule cells, alterations 
in the presynaptic dynamics of glutamate release (re-
duced probability of release), or increases in glutamate 
uptake by astrocytes would serve to confi rm the model. 
This model does not specify a unitary etiology for gluta-
matergic reductions in the dentate gyrus; rather, it is a 
pathophysiology that could be associated with a family of 
genetic and environmental factors each of which reduces 
glutamatergic transmission within and efferent from the 
dentate gyrus onto CA3 neurons, including the possibili-
ties of reduced neurogenesis (162, 163), risk gene effects in 
the hippocampus with functional alleles of DISC1 (164) or 
NRG1 (165, 166), or alterations in inhibitory GABA modu-
lation of granule cells (152, 212). Failure to fi nd evidence 
of heightened neuronal activity in CA3 or of reduced glu-
tamate signaling in the dentate gyrus would progressively 
falsify the model.

Diminished Pattern Separation

The role of the hippocampus in learning and memory 
includes two necessary but opposing functions: 1) pat-
tern separation at initial memory storage (to render 
stored memory patterns distinct from each other and 
avoid “spurious blending” [38]) and 2) pattern comple-
tion at memory recall (to recover a full, or more complete, 
memory from a partial cue). Unique characteristics of the 
dentate-to-CA3 connection (38, 44) optimize the ability 
of this pathway to foster pattern separation, including its 
strong but sparse afferents to CA3. The effect of reduced 
neurogenesis and/or reduced glutamate transmission in 
the dentate gyrus in schizophrenia could disadvantage 
pattern separation and sensitize CA3 for pattern comple-
tion functions, as CA3 would become differentially driv-
en by direct entorhinal cortex inputs, rather than by the 
dentate gyrus inputs that foster orthogonalization of hip-
pocampal representations of similar but distinct events. 
The relative shift toward pattern completion could plau-
sibly advantage inappropriate associations, generate 
false or illogical memories, and create a susceptibility to 
psychosis. The known hippocampal hyperperfusion in 
schizophrenia may refl ect this hypothesized increase in 
pattern completion under circumstances in which pat-
tern separation would prevail in the healthy brain (i.e., 
during a novel experience, the schizophrenic hippocam-
pus may erroneously retrieve a memory of a past event 
rather than appropriately encode a new distinct memory 
representation), a form of hippocampal prediction error. 

of the synapse (197, 198). Homeostatic plasticity mecha-
nisms occur over time to modify the overall level of excit-
ability of synapses in target tissue while preserving previ-
ous patterns of synaptic strengthening. In animal models, 
if incoming sensory inputs to a brain region are reduced, 
the threshold for development of long-term potentiation 
falls and lower levels of sensory input generate more long-
term potentiation (199–201). The schizophrenia model 
we propose here suggests that the reduction in the mossy 
fi ber activity onto CA3 neurons will generate plasticity 
changes in CA3, reducing the threshold for long-term po-
tentiation and augmenting it. The molecular events me-
diating and expressing long-term potentiation have been 
extensively characterized and are commonly quantifi ed as 
markers of activity-dependent tissue plasticity. Molecular 
changes in tissue marking increased long-term potentia-
tion include increases in α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid receptor (AMPAR) traffi cking into 
the synaptic membrane (202, 203), facilitated by increases 
in transmembrane AMPAR-regulatory proteins (204, 205) 
and elevation of postsynaptic signaling molecules such 
as calcium/calmodulin-dependent protein kinase II, mi-
togen-activating protein kinase, and postsynaptic mem-
brane-associated guanylate kinases, such as PSD-95 and 
SAP-102 (194, 195). NMDARs participate in the expression 
of long-term potentiation by increasing the proportion of 
their receptors containing NR2B subunits, possibly, as-
sociated with palmitoylation of the NR2B subunit (206). 
Long-term maintenance of long-term potentiation with 
synaptic strengthening is accompanied by structural re-
modeling of the synapse, including enlargement of exist-
ing spines and an increase in new dendritic spines (207). 
These use-dependent plasticity changes occur in a highly 
dynamic manner, mediated by phosphorylation of the sig-
naling proteins, largely in dendrites that are spatially and 
temporally compartmentalized (195, 204, 208).

We postulate that in schizophrenia exaggerated plastic-
ity changes associated with long-term potentiation will be 
found within CA3 and can result in increased neuronal ex-
citability, along with increased cerebral perfusion, in the 
CA3 subfi eld (209, 210). The heightened sensitivity in CA3 
would be magnifi ed both by a strengthened pathway from 
the entorhinal cortex to CA3 (see the following) and by the 
extensive excitatory collateral architecture in CA3. Func-
tionally, heightened CA3 activity could generate exagger-
ated pattern completion memory functions (38, 44) and 
enhance the production of incorrect or illogical associa-
tions, including psychotic experiences, which would then 
produce memories with psychotic content (211). On the 
basis of the well-studied molecular characteristics of long-
term potentiation and tissue plasticity in laboratory prep-
arations, these molecules can be targeted in human post-
mortem tissue to evaluate regional plasticity alterations in 
the hippocampus. To validate this proposed model, mark-
ers of increased plasticity in CA3 need to be identifi ed in 
human hippocampal tissue. Results that would confi rm 
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memories (211). Moreover, psychotic experiences are of-
ten of high salience, including episodic memories of dan-
ger, negative criticism, or excessive grandiosity, increasing 
their strength; this is consistent with the known enhanc-
ing effect of emotional stress on memory and on GluR1 
phosphorylation (218–220).

While this model is developed here as a hypothesis for 
schizophrenia, it could also be evaluated as a more gen-
eral hypothesis of psychosis. The proposed model could 
account for the elevated incidence of psychotic symptoms 
in diseases known to be associated with hippocampal pa-
thology, such as Alzheimer’s dementia (221), depression 
(222), and many forms of epilepsy (223), supporting the 
concept of psychosis as a dimension. Moreover, it would 
provide a mechanism for the frequent experience of psy-
chotic constructs in normal persons with no psychiat-
ric diagnosis, where prevalence fi gures approach 8.5% 
(224). A model of psychosis like the one proposed here is 
a syndromal model, analogous to congestive heart failure 
in cardiac disease, where etiologies are multiple, can be 
complex, and could include overlapping genetic and en-
vironmental risks.

Implications for Treatment, Current and Future

Although data that clarify the effect of antipsychotic 
drugs on the function of the medial temporal lobe remain 
remarkably incomplete, they suggest that at least some of 
the actions of antipsychotics could be mediated within the 
medial temporal lobe. D

1
 and D

2
 dopamine receptors are 

localized, each with a distinctive distribution, throughout 
the medial temporal lobe; manipulating signaling at D

1
 

or D
2
 receptors alters medial temporal lobe function and 

memory performance in experimental paradigms (225–
228). Inferential memory defi cits in schizophrenia are im-
proved with antipsychotic drug treatment (229). Thus, the 
available data document a role for dopamine in medial 
temporal lobe plasticity, even if with inadequate specifi c-
ity. Focused examination could answer these questions 
further.

In the future, if the proposed model of psychosis is sup-
ported, it would have additional implications for treatment. 
Based on the model proposed, novel treatments could be 
directed toward reversing glutamatergic insuffi ciency in 
the dentate gyrus and/or changing the unopposed increase 
of long-term potentiation in CA3. Treatments could be 
syndromal, acting like digitalis in congestive heart failure. 
These treatments would be most effective in acute psycho-
sis during early prodrome periods and possibly also during 
early years of illness, when plasticity mechanisms are most 
accessible. The possibility exists that known antipsychotic 
drugs, with actions mediated through serotonin and dopa-
mine receptors, deliver a component of their therapeutic 
action through enhancing dentate gyrus glutamate trans-
mission or through modulating long-term potentiation in 
CA3 (228, 230, 231). Further, basal perfusion measures in 
the hippocampus in individuals with psychotic illnesses 

Data suggest that hippocampal prediction errors serve to 
enhance hippocampal long-term potentiation (213) and 
fMRI BOLD signal (214), which may contribute to hip-
pocampal hyperperfusion and advantage inappropriate 
associations. Collectively, these changes may also gener-
ally hinder accurate declarative memory encoding and 
retrieval.

Experimental tests of the proposed pattern separation 
defi cit in schizophrenia are possible with fMRI; fi nding 
defi cits in pattern separation in individuals with schizo-
phrenia would serve to strengthen the model. Specifi cally, 
high-resolution fMRI of human hippocampal subfi eld 
activation during an incidental stimulus repetition para-
digm has recently revealed that signal from voxels inclu-
sive of the dentate gyrus differentiates between repeated 
stimuli and novel stimuli that are similar to previously en-
countered stimuli (suggesting pattern separation), where-
as CA1 shows a generalized response to these two classes 
of stimuli (suggesting pattern completion) (69, 215). Our 
model predicts that individuals with schizophrenia will 
fail to show a pattern separation bias in voxels inclusive 
of the dentate gyrus and that the degree to which this oc-
curs should correlate with the magnitude of behavioral 
impairments in conjunctive memory expression and 
hippocampal hyperperfusion. Second, to the extent that 
schizophrenia is associated with a bias toward “runaway” 
pattern completion, owing to the hypothesized dispropor-
tionate infl uence of entorhinal cortex inputs and recur-
rent collaterals on CA3 (relative to dentate gyrus inputs), 
individuals with the illness should more frequently experi-
ence hippocampal prediction errors, wherein CA3 outputs 
to CA1 (i.e., predictions) deviate from the direct cortical 
inputs from the entorhinal cortex to CA1 (i.e., sensory re-
ality) (213). Standard-resolution fMRI data indicate that 
hippocampal BOLD signal increases when experience-
dependent conjunctive predictions are violated (216, 217), 
and our model predicts that the magnitude of these hip-
pocampal mismatch or prediction error indices should be 
enhanced in individuals with the illness, again correlating 
with other behavioral and physiological measures of de-
clarative memory and hippocampal dysfunction. A failure 
to fi nd these types of alterations in medial temporal lobe 
function would progressively falsify the model.

Clinical Correlates

Certain clinical characteristics of psychotic thought in 
schizophrenia are consistent with this model. Individu-
als perceive their psychotic processes as normal thought; 
John Nash said that his delusional thoughts “come into my 
mind just like my other thoughts, so I have no option but 
to believe them” in response to his colleagues’ questions 
challenging his unusual thought content (77). Psychotic 
productions in affected individuals are rarely continuous-
ly new but are to some extent recurring, e.g., patients can 
have the same and/or related delusions, the same and/
or related set of hallucinations, indicating their status as 
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18. Scheibel AB: The hippocampus: organizational patterns in 
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19. Sloviter RS: Permanently altered hippocampal structure, excit-
ability, and inhibition after experimental status epilepticus in 
the rat: the “dormant basket cell” hypothesis and its possible rel-
evance to temporal lobe epilepsy. Hippocampus 1991; 1:41–66

20. Gorwood P, Corruble E, Falissard B, Goodwin GM: Toxic ef-
fects of depression on brain function: impairment of delayed 
recall and the cumulative length of depressive disorder in a 
large sample of depressed outpatients. Am J Psychiatry 2008; 
165:731–739

21. Woon FL, Hedges DW: Hippocampal and amygdala volumes 
in children and adults with childhood maltreatment-related 
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might provide a sensitive biomarker for testing novel an-
tipsychotic mechanisms. If the model is further verifi ed, 
then approaches to either increase neural transmission in 
the dentate gyrus or to reduce transmission in CA3 would 
be predicted to reduce the formation of new delusions and 
hallucinations and to promote the deconstruction of delu-
sional memories.

Summary

The proposed dentate gyrus glutamate insuffi ciency 
model suggests that the initial generation of psychotic 
associations may occur in a supersensitive, entorhinal 
cortex-driven CA3 subfi eld between normal mental con-
structs that are mistakenly associated and then are com-
mitted to memory, some with psychotic content. Another 
clinical feature consistent with this model, and with altera-
tions in homeostatic plasticity, is the observation that an-
tipsychotic treatment does not immediately and fully re-
solve psychotic symptoms (232). This modulated symptom 
response to pharmacological intervention is consistent 
with a homeostatic plasticity process. Other models of the 
involvement of hippocampal dysfunction in schizophrenia 
have also been proposed (213, 233–236) as a means to guide 
hypothesis-testing study of hippocampal pathophysiology. 
Models of pathophysiology in schizophrenia, to the extent 
they are supported in future study, will have direct and test-
able implications for relevant animal models of the illness 
and novel treatment approaches in schizophrenia.
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