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Objective: Proton magnetic resonance
spectroscopy (1H-MRS) has been increas-
ingly used to examine striatal neuro-
chemistry in adult major depressive disor-
der. This study extends the use of this
modality to pediatric major depression to
test the hypothesis that adolescents with
major depression have elevated concen-
trations of striatal choline and creatine
and lower concentrations of N-acetylas-
partate.

Method: Fourteen adolescents (ages 12–
19 years, eight female) who had major
depressive disorder for at least 8 weeks
and a severity score of 40 or higher on the
Children’s Depression Rating Scale—Re-
vised and 10 healthy comparison adoles-
cents (six female) group-matched for gen-
der, age, and handedness were enrolled.
All underwent three-dimensional 3-T 1H-
MRS at high spatial resolution (0.75-cm3

voxels). Relative levels of choline, crea-

tine, and N-acetylaspartate in the left and
right caudate, putamen, and thalamus
were scaled into concentrations using
phantom replacement, and levels were
compared for the two cohorts.

Results: Relative to comparison subjects,
adolescents with major depressive disor-
der had significantly elevated concentra-
tions of choline (2.11 mM versus 1.56
mM) and creatine (6.65 mM versus 5.26
mM) in the left caudate. No other neuro-
chemical differences were observed be-
tween the groups.

Conclusions: These findings most likely
reflect accelerated membrane turnover
and impaired metabolism in the left cau-
date. The results are consistent with prior
imaging reports of focal and lateralized
abnormalities in the caudate in adult ma-
jor depression.

(Am J Psychiatry 2007; 164:1881–1889)

Rates of major depressive disorder rise dramatically
in adolescence, with an estimated lifetime prevalence of
15% in adolescents by ages 15–18. Major depression is as-
sociated with significant morbidity, including deteriora-
tion in academic functioning, increased risk of substance
use, and attempted and completed suicides (1, 2). Fur-
thermore, adolescent major depression is a strong predic-
tor of major depression in adulthood, which carries its
own burden of disadvantage (3). These findings highlight
the need for specific neurobiological research in adoles-
cent major depression.

Converging lines of evidence suggest that the patho-
physiology of depression entails impairment of cellular re-
silience and neuroplasticity in specific cortical, subcorti-
cal, and limbic brain regions. The relationship between
the basal ganglia and depression has been inferred from
the high comorbidity between depression and Parkinson’s
disease as well as Huntington’s disease, both basal gan-
glia-related disorders. In addition, morphometric studies
(but not all) and functional neuroimaging studies have
documented smaller caudate, putamen, and thalamus as
well as impaired metabolism and blood flow in the stria-
tum and thalamus in depression (4–10).

Proton magnetic resonance spectroscopy (1H-MRS) has
provided additional evidence for the involvement of the
striatum in adult major depression. 1H-MRS provides met-
abolic assay of neuronal cells, cell energetics, density,
membrane turnover, gliosis, and glycolysis through their
respective surrogate markers, N-acetylaspartate, creatine,
choline, myo-inositol, and lactate levels (11). 1H-MRS stud-
ies have corroborated the role of impaired cellular resil-
ience in the basal ganglia of adults with major depression
through abnormal levels of choline and N-acetylaspartate.
Charles et al. (12) reported that elevated choline/creatine
ratios decreased after antidepressant treatment, whereas a
later study by Renshaw et al. (13) yielded opposite results.
Hamakawa et al. (14) found higher choline levels and cho-
line/creatine ratios in bipolar patients during a depressive
episode. Vythilingam et al. (15) reported lower caudate N-
acetylaspartate/creatine ratios and increased choline/cre-
atine ratios in the putamen in major depression. The dis-
crepant findings may be attributed in part to methodo-
logical issues, such as the use of single-voxel methods
susceptible to partial volume effects given the small size
and irregular shape of the striatum and thalamus; ratios to
creatine, which increase variability (16); use of a lower
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magnetic field (1.5-T) of lower sensitivity and spatial and
spectral resolutions. They may also reflect differences in
participant selection criteria, such as age range, depression
severity, medication status, and family history.

To our knowledge, there have been no 1H-MRS studies
of the striatum in pediatric major depression. We believe
that such research is important because establishing neu-
romarkers early in the course of the illness is likely to min-
imize confounding effects of chronicity and comorbidity
and facilitate identification of at-risk individuals. We hy-
pothesized that adolescents with major depression exhibit
increased striatal choline and creatine and decreased N-
acetylaspartate compared with healthy comparison
subjects but exhibit no differences in the thalamus. This
hypothesis is based on models of major depression that
entail impaired neuroplasticity and its collateral conse-
quences of increased membrane turnover and impaired
metabolism and neuronal viability (17).

Methods

Participants

Fourteen adolescents (eight of them female) 12–19 years old
(mean age=16.2 years, SD=2.1) who had symptoms of major de-
pressive disorder for at least 8 weeks and had a score ≥40 (mean=
63.6, SD=15.4) on the Children’s Depression Rating Scale—Re-
vised were enrolled from the New York University (NYU) Child
Study Center, the Department of Psychiatry at Bellevue Hospital,
and the inpatient psychiatric unit at NYU Tisch Hospital, all in
New York City.

Ten healthy comparison subjects (six of them female), group
matched for gender, age, and handedness, were recruited from
families of NYU staff. For participants age 18 and over, written in-
formed consent was obtained; those under age 18 provided as-
sent and a parent or guardian provided signed consent.

A child psychiatrist interviewed participants about themselves
and parents about their child with the Schedule for Affective Dis-
orders and Schizophrenia for School-Age Children—Present and
Lifetime Version. Based on the interview, the psychiatrist rated
each participant’s severity of depression on the Children’s De-
pression Rating Scale and on the severity item of the Clinical Glo-
bal Impression. Participants also completed the Beck Depression
Inventory, 2nd ed. Family medical and psychiatric history was ob-
tained by reports from participants and parents.

Exclusion criteria for all participants were IQ below 80, signifi-
cant medical or neurological disorder, and the usual MRI contrain-
dications, including claustrophobia, ferrous implants, ink tattoos,
metallic oral devices, large body habitus, or positive urine preg-
nancy test. Patients with major depressive disorder were excluded
if they had a current or past DSM-IV diagnosis of bipolar disorder,
schizophrenia, pervasive developmental disorder, posttraumatic
stress disorder, obsessive-compulsive disorder, Tourette’s disorder,
or eating disorder or if they had a substance-related disorder in the
past 12 months. Comparison subjects were excluded if they had
any major current or past DSM-IV diagnosis or a Children’s Depres-
sion Rating Scale score above 28.

MR Data Acquisition

All scans were done with a Trio 3-T full-body MRI scanner (Sie-
mens AG, Erlangen, Germany) using a TEM3000 (18) transmit-re-
ceive head coil (MRI Instruments, Minneapolis). For image guid-
ance of the MRS volume of interest, we used T1-weighted (echo
time=4 msec, repetition time=1,130 msec) and axial T2-weighted

(echo time=80 msec, repetition time=2,500 msec) MRI, as shown
in Figure 1, panels A–C. For both contrasts, field of view=240×240
mm2, matrix=512×512, and slice thickness=7.5 mm in the axial
and 5 mm in the coronal and sagittal planes were used.

For 1H-MRS, our automatic shim yielded 5.0 Hz (SD=1.0) line-
width for the metabolites in every voxel. A 10-cm (anterior-poste-
rior) × 7-cm (left-right) × 6-cm (inferior-superior) volume of inter-
est (420 cm3) was image-guided onto the anatomic structures of
interest, as shown in Figure 1. The volume of interest was excited
using point-resolved spectroscopy (echo time=135 msec, repeti-
tion time=1,600 msec) and subdivided into eight inferior-supe-
rior axial slices with Hadamard spectroscopic imaging (19). These
slices were partitioned with two-dimensional chemical-shift im-
aging into 16 (anterior-posterior) × 16 (left-right) voxels, each a
nominal 0.75 cm3 (19). The MRS took 27 minutes and the entire
protocol less than an hour. An example of an axial spectra matrix
covering the caudate, putamen, and thalamus of an adolescent
with major depressive disorder is shown in Figure 1.

MRS Data Processing

The MRS data were processed offline using in-house software.
Residual water was removed from the free induction decays in the
time domain. The data were then voxel-shifted to align the chem-
ical-shift imaging grid with the N-acetylaspartate volume of inter-
est, zero-filled from 16×16×8 to 256×256×8, apodized with a 3-Hz
Lorentzian, Fourier-transformed in the temporal, left-right, and
anterior-posterior direction and Hadamard-reconstructed along
the inferior-superior line. No spatial filters were applied. Spectra
were automatically corrected for frequency and zero-order phase
shifts in reference to the N-acetylaspartate peak in each voxel (19).

Relative N-acetylaspartate, creatine, and choline levels were
estimated from their peak area using parametric spectral model-
ing (20). These relative levels were scaled into concentrations, [Q],
in each voxel using phantom replacement against a 3-liter sphere
of 10.9 mM N-acetylaspartate in water (21). The [Q]’s were cor-
rected for differences between the phantom in vitro N-acetyl-
aspartate levels (T1

vitro/ T2
vitro=1.4/0.75 s) and those reported in

vivo of N-acetylaspartate (1.4/0.43 s), creatine (1.6/0.21 s) and
choline (1.2/0.36 s), using the following formula (22, 23):

Although the assumption of a single T1 and T2 for each metab-
olite ignores possible regional variations (22), it does not alter our
analyses since we compare similar regions across subjects.

The thalamus and striatum were outlined manually on an axial
T2-weighted image, as shown in Figure 1, panel A. For each pa-
tient, only the one 1H-MRS slice that best contained the bilateral
striatum and thalamus was used. Our in-house software scaled
and transcribed the outlined regions onto the quantitative meta-
bolic maps and calculated for each one the volume (the sum of the
circumscribed voxels), the sum of the [Q]’s from the equation
above for each metabolite, and their standard deviations. Each
metabolite’s concentration was obtained by dividing the sum of
the [Q]’s by the appropriate volume. Note that after the 16×16 to
256×256 zero-filling, the in-plane MRS voxel resolution for the
tracing (0.625 mm2) was sufficient to avoid ventricular CSF and
surrounding white matter. If the line delineating a structure
passed anywhere inside any of these interpolated voxels, their vol-
ume and metabolic contents were added to the respective sums.

Statistical Analyses

Mixed-model regression was used to compare patients and
comparison subjects with respect to the mean of each metabolite
in each region (left and right caudate, putamen, and thalamus),
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FIGURE 1. Volume of Interest and Slices Outlined on Axial, Sagittal, and Coronal MR Images, Along With Spectra Matrix
From One Slice and Maps From Fitted Peak Areas of the Spectra From a 16-Year-Old Girl With Depressiona

a In panel A, the 7 cm × 10 cm × 6 cm volume of interest is outlined on a T2-weighted axial image, and the striata and thalami are superim-
posed onto the image. In panel B, the eight inferior-superior Hadamard spectroscopic imaging-encoded slices are shown within the region
of interest on a T1-weighted sagittal image, with the slice from panel A marked with an arrow. Panel C shows the outline of the volume of
interest in a T1-weighted coronal image; the arrow indicates the location of the slice from panel A. The large image (bottom left) shows part
of the 7 cm × 10 cm spectra matrix from the volume-of-interest slice corresponding to the image in panel A, with the striata and thalami
locations outlined. Spectra represent 0.75-cm3 voxels, and all are on common frequency and intensity scales. The three images at bottom
right show metabolic maps of N-acetylaspartate, choline, and creatine from the fitted peak areas of the spectra on the left.
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while accounting for group differences in the volume of the given
region. A separate analysis was conducted for each metabolite
concentration within each region. In each case, the dependent
variable consisted of the measures acquired on each side of the
given region. Independent variables included subject group (in-
dex versus comparison subjects) and side (left versus right) as
fixed classification factors, and the term representing the interac-
tion between group and side (to determine whether group differ-
ences were the same on the left and right sides of the relevant
brain region), and region volume as a numeric factor.

The variance-covariance structure was modeled by assuming
observations to be correlated only when obtained from the same
subject, and by allowing the error variance to differ across subject
groups. All reported p values are two-sided type 3 significance
levels from F values (df=1, 21), with statistical significance set at
p<0.05.

Results

Participants

At the time of the scan, four patients were medication-
naive, two had been psychotropic-free for at least 1 year,
and eight had been treated with psychotropic medications
for periods ranging from 2 months up to two and a half
years. All patients on medication had not responded at the
time of their scan. Medications included selective seroto-
nin reuptake inhibitors (four patients were taking fluoxe-
tine, two were taking sertraline, one was taking escitalo-
pram, and one was taking citalopram). Additionally, three
were also taking lithium, one was taking lamotrigine, and
one was taking risperidone. Two patients had social pho-
bia and one had attention deficit hyperactivity disorder.
Seven patients had a parental history of major depression.
None of the comparison subjects’ parents had any psychi-
atric disorders. Patient and comparison group character-
istics are summarized in Table 1.

Volumetry

The mean volumes of circumscribed left and right re-
gions of interest in the patient group were as follows: thal-
amus, 3,214 mm3 (SD=305) and 3,232 mm3 (SD=368); cau-
date, 811 mm3 (SD=59) and 796 mm3 (SD=49); and
putamen, 885 mm3 (SD=84) and 903 mm3 (SD=84). In the
comparison group, the mean volumes were as follows:
thalamus, 3,251 mm3 (SD=336) versus 3,241 mm3 (SD=
311); caudate, 821 mm3 (SD=38) versus 796 mm3 (SD=31);

and putamen, 889 mm3 (SD=77) versus 880 mm3 (SD=74).
Neither region showed any significant difference between
the sides (left versus right) or between groups.

Note that these regions of interest included edge voxels
even when they fell only partly within the circumscribed
region. To estimate the edge voxels’ partial-volume contri-
bution, we considered the surface-to-volume ratio for
these structures. With a voxel volume of 2.9 mm3 and tha-
lamic region-of-interest volumes of ~3,230 mm3, ~118 out
of 1,103 voxels were at the surface, where their partial vol-
ume can be anywhere from 1% to 99%. Assuming an aver-
age partial volume of 50%, the partial volume would be
~5.4% in the thalamus (118/1103×50%), ~10.7% (30/
279×50%) in the caudate (average volume, 810 mm3), and
~10.2% (31/307×50%) in the putamen (average volume,
890 mm3).

Neurochemistry

Patients’ and comparison subjects’ choline, creatine,
and N-acetylaspartate concentrations from the left and
right caudate, putamen, and thalamus are compiled in Ta-
ble 2. Relative to comparison subjects, adolescents with
major depression had significantly elevated left caudate
choline concentrations (2.11 mM versus 1.56 mM) and el-
evated left caudate creatine concentrations (6.65 mM ver-
sus 5.26 mM), as shown in Table 2 and Figure 2.

No significant metabolite differences were found in the
right caudate and in the left and right putamen and thala-
mus between the two groups. Similarly, the groups did not
differ in metabolite concentrations averaged over the left
and right caudate, putamen, or thalamus.

There were no significant differences between adoles-
cents with major depression who were treated with psycho-
tropic medications (N=8) and those who were medication
naive or free (N=6) with respect to choline and creatine lev-
els in the left caudate.

Because antipsychotic drugs may affect striatal chemis-
try and volume (24, 25), we repeated the comparison ex-
cluding one adolescent treated with risperidone. The
groups’ left caudate choline and creatine levels remained
significantly different (F=5.58, df=1, 20, p<0.03, and F=
4.92, df=1, 20, p<0.04, respectively).

TABLE 1. Clinical and Demographic Characteristics of Adolescents With Major Depressive Disorder and Healthy Compari-
son Adolescents

Characteristic Depression Group (N=14) Comparison Group (N=10)
N % N %

Female 8 57 6 60
Ethnicity

Caucasian 6 43 6 60
African American 3 21 1 10
Hispanic 3 21 2 20
Asian 2 14 1 10

Mean SD Range Mean SD Range
Age (years) 16.2 2.1 16.1 1.9
Duration of illness (months) 17.36 11.36 3–36
Children’s Depression Rating Scale—Revised 63.6 15.4 40–83 17.9 1.9 17–23
Beck Depression Inventory, 2nd ed. 23.5 11.2 6–44 1.2 1.8 0–5
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Analyses of each brain region to examine interaction be-
tween major depression status and laterality (side of mea-
sure) was found to be significant for choline in the caudate
(p<0.05), as shown in Figure 2.

Discussion

To our knowledge, this is the first study of striatal neuro-
chemistry in adolescent major depressive disorder. Using
three-dimensional 1H-MRS at high spatial resolution
(0.75-cm3 voxels) and a 3-T field, we found higher choline
and creatine concentrations in the left caudate of adoles-
cents with major depression relative to comparison ado-
lescents. The hypothesis of increased choline bilaterally in
the caudate and putamen and decreased striatal N-acetyl-
aspartate was not substantiated. Our finding is consistent
with structural and functional neuroimaging studies doc-
umenting smaller caudate volumes and impaired blood
flow in adults with major depression (4, 5, 26, 27), as well
as decreased caudate blood flow in depressed versus non-
depressed patients with Parkinson’s disease (28).

Choline

Choline is an essential component of membrane lipids,
phosphatidylcholine, and sphingomyelin (29). The 1H-
MRS choline peak comprises mostly the quaternary N-
methyl groups of glycerophosphocholine breakdown
products (cytosolic compounds) and phosphocholine, the
membrane precursors of phosphatidylcholine (30). The
contribution of free choline to the signal is less than 5%,
and that of the acetylcholine is negligible (30). Elevated
choline is attributed to abnormal cell membrane metabo-
lism, myelin breakdown, or changes in glia density (31).

Elevated choline observed in the left caudate most likely
reflects accelerated cell membrane turnover due to glia
impairment that has been linked to major depression (32,
33). Two mechanisms may lead to this process: 1) myelina-
tion abnormalities secondary to oligodendrocyte dysfunc-
tion, which have been implicated in major depression
(34); and alternatively or in addition, 2) astrocyte abnor-
malities (35, 36). Astrocytes may have a role in major de-
pression via their role in CNS energy homeostasis.

Another possible mechanism for choline elevation in-
volves the second messenger system. Phosphocholine, a
major choline signal contributor and a metabolite of phos-
phatidylcholine, is an important source of diacylglycerol,
the second messenger known to participate in intracellular
signal transduction pathways (29, 37, 38) hypothesized to
contribute to the pathogenesis of major depression (39).

A third possible mechanism involving choline is in the
hypothalamic-pituitary-adrenal axis, repeatedly impli-
cated in biological studies of major depression. Glucocor-
ticoids are proposed to affect phosphatidylcholine metab-
olism in neurons (40).

Despite choline’s role as a precursor for the neurotrans-
mitter acetylcholine, its elevation in our study could not
be dominated by cholinergic overactivity, which has been
hypothesized in major depression (41). The small contri-
bution of free choline and acetylcholine to the overall cho-
line signal renders this possibility unlikely.

Choline has been the subject of a number of studies with
diverse findings in other brain regions in pediatric major
depression. Using similar three-dimensional 1H-MRS, Far-
chione et al. (42) found increased choline concentrations in
the left dorsolateral prefrontal cortex, whereas Caetano et
al. (43), in a later 8-cm3 single-voxel study, reported de-
creased choline concentrations in the left dorsolateral pre-
frontal cortex. In contrast, Mirza et al. (44), using single 3-
cm3 voxels, found no differences in choline concentrations
in the anterior cingulate cortex. Other studies examined
metabolite ratios, also with conflicting results. Increased
choline/creatine ratios were reported in the orbitofrontal
and right prefrontal cortex of adolescents with major de-
pression (45, 46), and decreases were reported in the left
amygdala (47). However, different brain regions may entail
different neurochemical abnormalities in depression. Our
observation is consistent with one prior report of no tha-
lamic choline abnormalities in adolescents with major de-
pression (48).

Creatine

This peak is a composite of overlapping creatine and
phosphocreatine resonances, representing the high-en-
ergy phosphate reserves in the cytosol of neurons and glia

TABLE 2. Metabolite Levels as Scaled Into Concentrations (in mM) Using Phantom Replacement in the Left and Right Cau-
date, Putamen, and Thalamus in Adolescents With Major Depressive Disorder and Comparison Adolescents

Structure 
and Side

Choline Creatine N-Acetylaspartate

Comparison Group Depression Group Comparison Group Depression Group Comparison Group Depression Group

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD
Caudate

Left 1.56 0.35 2.11** 0.6 5.26 1.41 6.65* 1.73 7.29 1.85 8.99 2.84
Right 2.16 0.43 2.10 0.62 7.08 1.59 8.15 3.06 8.35 1.7 9.75 2.51

Putamen
Left 1.86 0.57 1.93 0.64 6.82 1.59 7.77 2.44 10.28 2.27 10.96 2.61
Right 1.9 0.73 2.03 0.58 7.49 1.05 7. 89 2.32 9.96 1.46 11.46 2.65

Thalamus
Left 1.73 0.42 2.02 0.65 5.83 0.87 6.18 2.35 11.33 1.83 11.8 2.51
Right 2.24 0.46 2.32 0.68 6.48 0.66 7.29 2.29 11.64 1.48 12.38 2.65

*p<0.05. **p≤0.01.
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(21, 49). Creatine’s elevation in 1H-MRS has been attrib-
uted to altered metabolism (50). Our elevated creatine
finding is consistent with altered metabolism, as sug-
gested by earlier studies that found both decreased (4, 5,
51–53) and increased (7, 54) basal ganglia/caudate blood
flow and glucose metabolism in major depression. Indeed,
31P-MRS, capable of quantifying nucleoside triphos-
phates, has further implicated basal ganglia metabolism
in major depression (55, 56).

Since most studies of mood disorders report ratios to
creatine, rather than creatine concentrations, this metab-
olite is infrequently examined as a separate entity and
thus far has never been examined in the caudate. The few
studies that quantified creatine concentration in pediatric
major depression focused on other brain regions; they re-
ported decreases in the anterior cingulate cortex in ado-
lescent major depression (44) and no abnormalities in the
dorsolateral prefrontal cortex (42, 43). In adult major de-
pression, the only study of creatine concentrations in the
basal ganglia used low-spatial-resolution (27 cm3) single-
voxel MRS and did not identify any abnormality (14). Sim-
ilarly, while we did not find an elevation in creatine levels

in the striatum as a whole, our high spatial resolution en-
abled us to detect a focal elevation lateralized to the left
caudate, underscoring the advantage of high field, sensi-
tivity, and resolution. On the other hand, our finding of no
thalamic creatine abnormalities in adolescents with major
depression is consistent with one prior study (57).

The finding of elevated creatine levels in the major de-
pression group emphasizes the limitation of using creat-
ine as reference for metabolite measurement. Specifically,
the creatine elevation could obscure a concomitant cho-
line increase in a choline/creatine ratio. Similarly, a nor-
mal N-acetylaspartate level could be erroneously inter-
preted as a decline when the examined metric is the N-
acetylaspartate/creatine ratio. Neither would be encoun-
tered when the analyzed metrics are scaled into concen-
trations using phantom replacement.

N-acetylaspartate

N-acetylaspartate is the second most abundant amino
acid derivative in the mammalian brain (11, 58). It is al-
most exclusive to neurons and their processes and is
therefore regarded as a surrogate marker for their viability
(59, 60). Our hypothesis that N-acetylaspartate levels
would be decreased in adolescents with depression was
not supported by our data. The increase of choline and
creatine without a concomitant N-acetylaspartate decline,
as observed here, suggests accelerated membrane turn-
over but without neurodegeneration. While preliminary,
this finding is concordant with those of other studies of
pediatric major depression that found no N-acetylaspar-
tate decline, albeit in different brain regions (42–45, 47). In
contrast, N-acetylaspartate loss was reported in the cau-
date in adults with major depression in a small (N=7)
study that analyzed N-acetylaspartate/creatine ratios (15).

Lateralization of Caudate Metabolic 
Abnormalities in Major Depression

The lateralization of caudate neurochemical abnormal-
ities in adolescent major depression fits with mounting
evidence implicating the left hemisphere in depression
(61). In a study focusing specifically on the basal ganglia
(9), volume differences between depressed and compari-
son subjects in the left putamen and globus pallidus cor-
related with illness length and frequency of depressive ep-
isodes. In other studies, patients with left caudate lesions
were found to be more likely to have major depression
than those with right basal ganglia or thalamic lesions
(62), and patients with left subcortical strokes, especially
in the left caudate, had a significantly higher incidence of
major depression than those with posterior subcortical or
right basal ganglia lesions (61, 63).

Additional evidence for a role of the left caudate in de-
pression is inferred from symptomatic correlation. Pillay
et al. (64) found a negative correlation between baseline
depressive symptoms and left caudate volume. In adults
with major depression, change in left caudate regional ce-

FIGURE 2. Plots of the 25%, Median, and 75% Ranges
(Boxes) and the ±95% Range (Whiskers) of the Lateraliza-
tion of the Choline and Creatine Concentrations Between
the Left and Right Caudate in Adolescents With Major De-
pressive Disorder and Comparison Subjectsa

a Significant differences between groups were observed only in the
left caudate.
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rebral blood flow correlated with the emergence of de-
pressive symptoms after interruption of paroxetine treat-
ment (65). In cancer patients, increased left caudate
glucose metabolism at baseline was associated with de-
pressive symptoms 2 years later compared with patients
who did not develop depression (54). Taken together,
these findings emphasize the potential role of metabolic
probes for early identification of major depressive disor-
der, perhaps even before the onset of clinical symptoms.

Although our findings of focal lateralized caudate abnor-
malities are consistent with prior studies of adult major de-
pression, they should be considered preliminary in light of
several limiting factors. First, the cohort size was relatively
modest. Furthermore, because of the small sample size, we
did not correct for multiple hypotheses, leading to possible
type I errors. Second, most patients with major depression
were on medication at the time of the scan. One treatment-
response study (66) identified significant change in the
choline/creatine ratio only in a small sample of patients
who responded to treatment (N=8) compared with those
who did not respond (N=7). All the adolescents with major
depression in our study were depressed at the time of their
scan, and the eight patients taking psychotropic medica-
tions had not responded. Additionally, there were no
metabolite differences between adolescents with major
depression who were treated and those not treated. None-
theless, since a medication effect cannot be ruled out, our
findings should be viewed as preliminary.

We also did not examine the contribution of family his-
tory. This is of importance in light of strong evidence for
familial transmission in adolescent major depression,
which has fostered interest in familial major depression as
a potentially distinct subgroup (10). While we did collect
information regarding family history from parents, we did
not conduct a comprehensive diagnostic interview, such
as the Structured Clinical Interview for DSM-IV-TR.

An additional limitation was the use of intermediate
rather than short echo-time 1H-MRS. Using short echo-
time 1H-MRS would have enabled us to quantify myo-
inositol, which reflects glia function. We chose to use in-
termediate echo-time 1H-MRS, as it provides a better
baseline and is superior with respect to reduction of mac-
romolecule contamination.

In summary, our preliminary findings suggest focal left
lateralization of caudate neurochemical abnormalities in
adolescents with major depression, manifesting in in-
creased choline and creatine, which suggests that mem-
brane breakdown and impaired metabolism may play an
early role in the disorder. Future studies should use larger
cohorts and should strive to focus on specific clinical sub-
groups. Use of inclusion criteria such as familial major de-
pression and psychotropic-naive status may improve the
detection of neurobiological findings by decreasing phe-
notypic heterogeneity.
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