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Objective: Aging in Down’s syndrome is
accompanied by amyloid and neurofibril-
lary pathology, the regional and laminar
distribution of which resembles patholog-
ical changes seen in Alzheimer’s disease.
Previous studies using magnetic reso-
nance imaging (MRI) demonstrated age-
related atrophy of medial temporal lobe
structures in nondemented older subjects
with Down’s syndrome, reflecting early al-
locortical pathology. Corpus callosum at-
rophy has been established as a marker
of neocortical neuronal loss in Alzheimer’s
disease. This study investigated whether
atrophy of the corpus callosum and hip-
pocampus occurs in nondemented sub-
jects with Down’s syndrome and com-
pared the degree of age-related atrophy
between these structures.

Method: Hippocampus and corpus callo-
sum measures were obtained from volu-
metric T1-weighted MRI scans of 34 non-
demented Down’s syndrome adults
(mean age=41.6 years, 17 women) and 31
healthy comparison subjects (mean age=
41.8 years, 14 women).

Results: Down’s syndrome subjects had

smaller corpus callosum areas and hippo-
campal volumes relative to age-matched

healthy comparison subjects, even after

age and total intracranial volume were
controlled. There was an age-related de-

crease of corpus callosum area (most

prominent in posterior regions) and hip-
pocampal volume in the Down’s syn-

drome group. The degree of the age effect

was comparable between the total corpus

callosum and hippocampus, and corpus
callosum size was correlated with cognitive

performance in the Down’s syndrome sub-

jects. There was no correlation between
age and corpus callosum or hippocampal

size in the comparison group.

Conclusions: Comparable decrease of
corpus callosum and hippocampal size

with age in nondemented subjects with

Down’s syndrome suggests that neocorti-
cal neuronal alterations accompany allo-

cortical changes in the predementia phase

of Down’s syndrome.

(Am J Psychiatry 2003; 160:1870–1878)

With advancing age, an increasing proportion of older
(>40 years) subjects with Down’s syndrome shows a pattern
of cognitive decline similar to that observed in patients with
Alzheimer’s disease. Initially, there is a slowly progressive
memory decline, followed by a linear decline in nonmem-
ory cognitive function with accompanying dementia (1–3).
Prevalence of dementia in Down’s syndrome subjects has
been estimated to reach about 5%–10% up to the fifth de-
cade of life and about 40%–50% by the sixth decade of life
(1, 4). Postmortem studies show that subjects with Down’s
syndrome can exhibit significant amyloid deposition in the
cerebral cortex by their third or fourth decade of life (5, 6).
At 40 years of age, these studies have shown that virtually all
Down’s syndrome subjects have neuropathological lesions
that meet the pathological criteria for Alzheimer’s disease
(7–9). Earliest pathological changes are thought to occur in
the medial temporal lobe, after which they are found in
neocortical association regions by the age of 40 (10–13). The
laminar and regional cortical distribution of amyloid and
neurofibrillary pathology closely resembles that of Alzhei-
mer’s disease, rendering Down’s syndrome a model to study
the prodromal stages of Alzheimer’s disease (14).

Magnetic resonance imaging (MRI)-based measure-
ment of regional brain atrophy can provide an in vivo esti-
mate of neuronal and axonal loss in neurodegenerative
disease. In particular, hippocampal atrophy has been es-
tablished as a measure of allocortical neuronal loss in
Alzheimer’s disease (15–17). The origin of corpus callosum
fibers from layer III and V pyramidal neurons in the cere-
bral hemispheres, and studies using MRI, suggest that cor-
pus callosum atrophy can be a marker of neocortical neu-
ronal degeneration in Alzheimer’s disease (18–23). Several
computer-assisted tomography and MRI studies have re-
ported significantly reduced volumes of the hippocampus
and adjacent medial temporal lobe structures with ad-
vancing age in nondemented subjects with Down’s syn-
drome (24–26), consistent with early allocortical patholog-
ical changes and memory loss. Other studies, however,
failed to show a significant correlation between hippo-
campal volume and age in these subjects (27, 28). The most
consistent age-related finding in Down’s syndrome sub-
jects outside of the medial temporal lobe in cross-sectional
studies was an increase of ventricular volume with age in
nondemented elderly subjects with Down’s syndrome (24,
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29). Age-related total brain and gray matter atrophy, how-
ever, was not detected before the onset of dementia (2, 24,
27, 30, 31). Age-related changes in corpus callosum size in
Down’s syndrome subjects have not been studied.

In the current study, we determined with MRI regional
corpus callosum area and hippocampal volume in nonde-
mented subjects with adult Down’s syndrome and age- and
gender-matched healthy comparison subjects. We hypoth-
esized that both corpus callosum areas and hippocampal
volume would be reduced in Down’s syndrome subjects
with advancing age, reflecting early Alzheimer’s disease-
type neuropathology. We compared the degree of age-re-
lated decrease of corpus callosum and hippocampal size,
using a previously established statistical model based on
receiver operating characteristic curve analysis (32). This
comparison is based on the notion that corpus callosum
and hippocampal atrophy reflect neocortical and allocorti-
cal Alzheimer’s disease-type neuropathology, respectively.
In addition, we investigated correlations between neuro-
psychological measures of global and domain-specific
cognitive performance and corpus callosum size. This
study elucidates neocortical and allocortical morphologi-
cal changes in the predementia stages of Alzheimer’s dis-
ease-type neuropathology in Down’s syndrome.

Method

Subjects

Thirty-four subjects with Down’s syndrome (trisomy 21 ascer-
tained through karyotyping) and 31 healthy comparison subjects
underwent MRI scans. The ages of the Down’s syndrome and
comparison groups were similar (mean=41.6 years [SD=9.1,
range=25.3–62.5] and 41.8 years [SD=10.8, range=26.2–64.5], re-
spectively; t=0.08, df=63, p=0.94, two-tailed t test). Gender distri-
butions were similar: 17 women and 17 men in the Down’s syn-
drome group and 14 women and 17 men in the comparison group
(Pearson χ2=0.15, df=1, p=0.70). Hippocampal data from all sub-
jects have been published previously (26).

To compare age effects on corpus callosum areas and hippo-
campal volumes, the Down’s syndrome group was divided into a
young (<40 years) Down’s syndrome group (N=19, nine women
and 10 men; mean age=34.9 years [SD=4.0]) and an old (>40
years) Down’s syndrome group (N=15, eight women and seven
men; mean age=50.2 years [SD=5.8]). Both groups were not differ-
ent in terms of gender distribution (Pearson χ2=0.1, df=1, p=0.73)
or total intracranial volume (two-tailed t test: t=1.5, df=32, p=
0.15). As expected, the groups differed in age (two-tailed t test: t=
–9.2, df=32, p<0.001). Overall cognitive ability had been assessed
by using the Peabody Picture Vocabulary Test, Revised (33). Mean
test age in the Peabody Picture Vocabulary Test was 6.4 years (SD=
3.0) in the young and 4.2 years (SD=2.7) in the old subjects.

All of the Down’s syndrome and comparison subjects under-
went medical, neurological, and psychiatric evaluations accord-
ing to published criteria (34); the assessment included a struc-
tured examination to exclude extrapyramidal diseases (35). All
subjects had Hachinski scale (36) ischemia scores <5. No subject
had a history of significant head trauma, toxin exposure, diabetes,
or drug or alcohol abuse. Psychiatric disorders were diagnosed in
four subjects with Down’s syndrome: two had obsessive-com-
pulsive disorder, and two had psychotic disorder not otherwise
specified. Twelve Down’s syndrome subjects had hypothyroidism
treated with levothyroxine, and all 12 had levels of thyroid-stimu-

lating hormone in the normal range. Normal results were ob-
served in all subjects following urinalysis; blood measurements of
electrolytes, glucose, minerals, lipids, folate, vitamin B12, antinu-
clear antibody, and rheumatoid factor; liver, renal, and thyroid
function tests; and tests for HIV and syphilis. Several of the sub-
jects with Down’s syndrome had functional heart murmurs, and
subjects who had not previously been evaluated for valvular heart
disease were evaluated with echocardiograms as part of our
study. A clinical screening evaluation of the MRI, performed inde-
pendently of the volumetric analyses, showed no evidence of
stroke, tumor, or mass effect.

Subjects with dementia were excluded from this study. The ex-
clusion of dementia in Down’s syndrome was made by using
modified criteria from DSM-III, which specified an acquired, pro-
gressive loss of intellectual function such as loss of daily living
and vocational skills, memory impairment, reduced speech and
comprehension, and personality change. The diagnosis was
based on interviews with caregivers, clinical examination, and
bedside mental status tests that used standardized criteria (37).
Diagnoses were made independently of results of neuropsycho-
logical testing and MRI and discussed to consensus by a team of
neurologists, psychiatrists, and neuropsychologists experienced
in the diagnosis of dementia in Down’s syndrome. Interrater reli-
ability for our method of diagnosis of dementia in Down’s syn-
drome has been previously established (30).

After describing the study to each subject or to the holder of a
durable power of attorney or legal guardian, written informed
consent was obtained. Assent to participate in the study also was
obtained from the subjects with Down’s syndrome. The research
was approved by the National Institute on Aging Institutional Re-
view Board.

MRI

MRI of the brain was performed on a 0.5-T scanner (Picker In-
struments, Cleveland) and on a 1.5-T scanner (General Electric Si-
gna II, Milwaukee). Total intracranial volume was measured from
6-mm-thick contiguous coronal slices (TR/TE=2000/20 msec, flip
angle=45°, field of view=25 cm, matrix=256×160) obtained per-

FIGURE 1. Corpus Callosum Subregionsa Measured in 34
Nondemented Adults With Down’s Syndrome and 31
Healthy Comparison Subjects

a Subregions were measured in the midsagittal slice (C1: rostrum and
genu; C2: anterior truncus; C3: middle truncus; C4: posterior trun-
cus, isthmus; C5: splenium).
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pendicular to the inferior orbitomeatal line on the 0.5-T scanner.
Hippocampal volumes were measured on 5-mm-thick contiguous
oblique T1-weighted slices (15 slices, TR/TE=530/20 msec, flip an-
gle=90°, field of view=16 cm, matrix=256×256) obtained perpen-
dicular to the Sylvian fissure, as ascertained through sagittal scout
slices and encompassing only the temporal lobe from its anterior
pole to the end of the lateral sulcus, on the 1.5-T scanner. Several
Down’s syndrome subjects could not complete MRI investigations
while awake and thus underwent the scan with intravenous seda-
tion while under the care of an anesthesiologist. Corpus callosum
areas were determined from volumetric T1 weighted scans ob-
tained on the 0.5-T scanner (sagittal orientation, slice thickness=2
mm, in-plane resolution=1 mm×1 mm, TR/TE=20/6 msec, flip an-
gle=45°) in 17 Down’s syndrome and 17 comparison subjects and
on the 1.5-T scanner (coronal orientation, slice thickness=2 mm,
in-plane resolution=0.94 mm×0.94 mm) in 17 Down’s syndrome
and 14 comparison subjects. The latter sequence was reoriented
in the sagittal plane by using trilinear interpolation.

Hippocampus and Corpus Callosum Measurement

Areas of the corpus callosum and of five callosal subregions
were measured in the midsagittal slice of the three-dimensional
MRI by using ANALYZE software (Biomedical Imaging Resource,
Mayo Foundation, Rochester, Minn.) on a workstation (Silicon
Graphics, Palo Alto, Calif.), as described elsewhere (38) (Figure 1).

Briefly, total callosal area was obtained by manually tracing the
outer edge of the corpus callosum on the midsagittal slice. Subse-
quently, areas of five callosal subregions were defined by using a
simple geometrical construction. Subregions were labeled C1 to
C5 in the rostral-occipital direction. Region C1 covers the rostrum
and genu; regions C2–C4 the anterior, middle, and posterior trun-
cus, respectively (region C4 also contained the isthmus); and re-
gion C5 the splenium. The number of pixels within each region
was summed and multiplied by pixel size to obtain absolute val-
ues (mm2) for the measured areas.

Left and right hippocampal formations were traced according
to the method of Watson et al. (39) using a workstation (Sun Mi-
crosystems, Mountain View, Calif.) with a high-resolution moni-
tor and established tracing software (40, 41), as previously de-
scribed (26). The volume, in cubic centimeters, was calculated by
summing the areas (in square centimeters) of the regions of inter-
est across slices and multiplying by slice thickness. One investiga-
tor (C.H.) measured the corpus callosum, and one investigator
(J.S.K.) measured the hippocampus. Both were blind to subject
group, age, gender, and cognitive status.

The intraclass correlation coefficient for interrater reliability
(determined from 10 scans measured by two independent re-

searchers) ranged from 0.98 for total corpus callosum area and
subregions C1 and C2, to 0.95 for region C3. The intraclass corre-
lation coefficient for intrarater reliability (determined from 10
scans measured twice by the same researcher, blind to scan iden-
tity) was 0.98 for total corpus callosum area (21). The intraclass
correlation coefficient for intrarater reliability was 0.96 for hippo-
campus volumes (42).

Cognitive Assessment

All Down’s syndrome subjects underwent extensive neuropsy-
chological testing; the applied tests are described in more detail
elsewhere (3). From these tests, we identified a subset of tests that
had shown significant differences between young and old Down’s
syndrome subjects in a previous study (3). These were the sub-
tests of the Down Syndrome Mental Status Examination, a range
of memory tests and the extended block design test. Since the
main focus was not on memory tests (which had been studied be-
fore and were hypothesized to primarily correlate with hippo-
campal but not corpus callosum measurements [26]) and in order
to reduce the number of statistical tests, we selected only the
Down Syndrome Mental Status Examination and the extended
block design test for correlation analyses with volumetric mea-
sures. Overall cognitive ability in the Down’s syndrome subjects
was assessed with the Peabody Picture Vocabulary Test (33).

The Peabody Picture Vocabulary Test is a test of word knowl-
edge, in which the subject indicates a drawing that best depicts
the meaning of a spoken word. It is regarded as a measure of ver-
bal intelligence (43) and spans both very low age ranges and levels
of mental ability and levels considerably above average adult abil-
ity (44). The Down Syndrome Mental Status Examination (45, 46)
tests for recall of personal information (name, age, birth date),
orientation (day of the week, season of the year), immediate and
delayed memory (identity of three objects and location of three
hidden objects), language (confrontation naming, sentence repe-
tition, comprehension of one-, two-, and three-step commands),
visuospatial performance (three-dimensional block design) and
praxis (transitive and intransitive limb movements, sequential
task). The extended block design test (46) is a two-dimensional
construction test, derived from the WISC-R Block Design test
(47). The extended block design test has eight items and uses the
same blocks as the WISC-R Block Design test. All tests were ad-
ministered by trained psychometricians.

Statistical Analysis

Differences of hippocampal volumes and corpus callosum ar-
eas between Down’s syndrome and comparison subjects were de-
termined by using analysis of covariance, with group as the be-

TABLE 1. Regional Brain Volumes of Nondemented Adults With Down’s Syndrome and Healthy Comparison Subjects

Brain Region

Volume

ANCOVAa
Comparison Subjects

(N=31)
Down’s Syndrome Subjects 

(N=34)

Mean SD Mean SD F (df=1, 61) p
Total intracranial volume (cm3)b 1495.1 163.4 1254.5 144.5
Hippocampus (cm3)

Left 3.20 0.43 2.33 0.40 24.5 <0.001
Right 3.45 0.46 2.54 0.47 19.9 <0.001

Corpus callosum (mm2)
Total area 493.3 65.0 424.2 62.0 4.2 0.05
Subregions (anterior to posterior)

C1 142.1 20.6 115.3 21.6 9.1 0.004
C2 66.0 16.7 64.4 17.6 0.6 0.40
C3 56.4 14.1 50.5 11.7 0.2 0.70
C4 54.5 16.2 55.5 17.4 1.7 0.20
C5 151.3 28.3 117.3 23.1 11.9 0.001

a Analyses measured main effects of group. Covariates were age and total intracranial volume.
b Significant difference between groups (t=39.7, df=63, p<0.001).
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tween-subject factor and age and total intracranial volume as
covariates.

To test for the effects of age while controlling for effects of gen-
der and total intracranial volume, we performed linear regres-
sions. Because total intracranial volume and gender were highly
collinear within both groups (with larger total intracranial vol-
umes seen in male subjects), we used two separate multiple re-
gression models with the regional volumes as dependent vari-
ables: one had gender entered first into the model, the other had
total intracranial volume entered first; both were then followed by
subject age.

Partial correlation coefficients on rank-transformed data were
used to determine correlations between neuropsychological
scores and regional volumes while we controlled for the effect of
total intracranial volume.

We used binary logistic regression to determine the odds ratios
of hippocampal volume and corpus callosum area classifying
Down’s syndrome patients as belonging to the young or old
Down’s syndrome group. Data were rank transformed to accom-
modate differences in metrics and variances between hippocam-
pus and corpus callosum measures. Comparing the odds ratios
between different measures allows determining differences in
classification accuracy between regions. Classification accuracy,
on the other hand, is directly related to the degree of atrophy of
the specified regions. Additionally, we used analysis of areas
under receiver operating characteristic curves, with age group
(young Down’s syndrome versus old Down’s syndrome groups) as
a dependent variable. As previously described (32), the area un-
der the receiver operating characteristic curve can serve as a mea-
sure of the degree of atrophy and can be directly compared be-
tween different regions.

Statistical analyses were conducted by using SPSS for Windows
Version 11.0 (Chicago). The statistical significance threshold was
set at p<0.05.

Results

As shown in Table 1, there were significant differences
between the Down’s syndrome and comparison groups in
bilateral hippocampal volumes and in the total, anterior
(C1), and posterior (C5) corpus callosum areas after total
intracranial volume and age were controlled. Total intracra-
nial volume differed significantly between groups but was
not correlated with age in the comparison (r=0.13, df=29, p=
0.46) or Down’s syndrome (r=0.17, df=29, p=0.35) groups.

Figure 2 illustrates corpus callosum shape in a young
and an old Down’s syndrome subject. In the Down’s syn-
drome group, there was a significant effect of age on bilat-
eral hippocampal volumes and total corpus callosum area
after gender and total intracranial volumes were con-
trolled. Age effects were predominant in posterior corpus
callosum subregions (C3 to C5) (Table 2, Table 3, Figure 3).
In the comparison group, the only effect of age on a volu-
metric measure was an increase of posterior corpus callo-
sum area with increasing age (area C5).

A binary logistic regression model was used to compare
the extent of atrophy in the hippocampus and corpus cal-
losum. Odds ratios were derived for each volumetric mea-
sure to classify Down’s syndrome subjects as belonging to
the young or the old group. Odds ratios were 0.90 for re-
duced left hippocampal volume (95% confidence interval
[CI]=0.83–0.98), 0.91 for reduced right hippocampal vol-

ume (95% CI=0.84–0.99), and 0.91 for reduced total corpus
callosum area (95% CI=0.84–0.99). In accordance with
these findings, areas under receiver operating characteris-
tic curves, classifying Down’s syndrome subjects into the
young and old Down’s syndrome groups, were nearly
identical between bilateral hippocampus and total corpus
callosum (left hippocampus: 0.76 [95% CI=0.59–0.92];
right hippocampus: 0.74 [95% CI=0.57–0.91]; total corpus
callosum: 0.74 [95% CI=0.57–0.91]). Odds ratios and area
under the receiver operating characteristic curves for cor-
pus callosum subregions were not significantly different
from random classification.

When total intracranial volume was controlled by using
partial correlation, there were significant correlations be-
tween area C3 and total Down Syndrome Mental Status
Examination (r=0.37, p<0.05), as well as language (r=0.46,
p<0.05), and orientation (r=0.37, p<0.05) subscores. C4
area was significantly correlated with total Down Syn-

FIGURE 2. Shape of Corpus Callosum in Young and Old
Nondemented Adults With Down’s Syndromea

a Each image is a midsagittal slice of a volumetric T1-weighted MRI
scan. To facilitate direct comparison, both scans have been coreg-
istered using a linear affine transformation algorithm imple-
mented in SPM 99 (Wellcome Department of Cognitive Neurology,
London), which takes into account global differences in head size
but preserves the size and position of structures relative to each
other.

53-Year-Old Woman With Down's Syndrome

29-Year-Old Woman With Down's Syndrome
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drome Mental Status Examination score (r=0.46, p<0.05),
as well as language (r=0.41, p<0.05), orientation (r=0.52,
p<0.01), visuospatial (r=0.54, p<0.01) and memory (r=0.42,
p<0.05) subscores and the extended block design test (r=
0.41, p<0.05). There were no other significant correlations
between corpus callosum areas and neuropsychological
scores.

Discussion

We used MRI to investigate age-related decreases of cor-
pus callosum and hippocampal size in nondemented
adult subjects with Down’s syndrome and in healthy age-
and gender-matched comparison subjects. As previously
reported (26), Down’s syndrome subjects showed a signifi-
cant correlation between hippocampus volume and age.
We now report correlations between age and corpus callo-
sum areas, most prominent in posterior subregions, in the
Down’s syndrome subjects. The age-related decrease of
corpus callosum area was comparable to the decrease of
hippocampal volume. In contrast, there was no age effect
on volumetric measures in the comparison subjects ex-
cept for increased posterior corpus callosum area C5 with
advancing age. These results indicate that neocortical as-
sociation neurons, whose fibers are represented in the

corpus callosum, are lost or otherwise abnormal in the
predementia stage of Down’s syndrome. These changes
are accompanied by evidence of allocortical neuronal de-
generation, suggested by the age-related decrease of hip-
pocampal volumes.

The Down’s syndrome subjects had significantly smaller
hippocampal volumes and corpus callosum areas (partic-
ularly anterior and posterior) than the comparison sub-
jects, even after intracranial volume and age were con-
trolled. These findings agree with evidence of significant
reductions of hippocampus and cerebral gray matter vol-
umes as well as with differences in corpus callosum size
and shape in Down’s syndrome subjects younger than 25
years (48–51). Therefore, age-related decrease of the cor-
pus callosum and hippocampus in adult nondemented
Down’s syndrome subjects appears to be superimposed
on initial developmental changes in these structures.

Consistent with earlier imaging studies (24, 25), we
found reduced hippocampal volumes in nondemented
Down’s syndrome subjects with advancing age. In clin-
icopathological studies, MRI-determined hippocampal
volume accounted for about 80% of variability of hippo-
campal neuron density in Alzheimer’s disease (15–17).
Therefore, consistent with neuropathological studies (10),
our findings suggest an early loss of allocortical neurons

TABLE 2. Effect of Age on Regional Brain Volumes in 34 Nondemented Adults With Down’s Syndrome and 31 Healthy Com-
parison Subjects After the Effect of Gender Was Controlled

Region of Interest

Linear Regression With Control for Gender Effecta

Healthy Comparison Subjects Down’s Syndrome Subjects

Beta r2 F (df=1, 28) p Beta r2 F (df=1, 31) p
Hippocampus

Left 0.12 0.01 0.5 0.48 –0.46 0.21 8.3 0.007
Right 0.23 0.05 1.9 0.18 –0.45 0.20 7.7 0.009

Corpus callosum
Total 0.17 0.03 0.9 0.35 –0.52 0.27 11.2 0.002
Subregions (anterior to posterior)

C1 –0.03 0.001 0.04 0.85 –0.33 0.11 3.9 0.06
C2 –0.17 0.03 1.0 0.32 –0.27 0.07 2.4 0.13
C3 0.05 0.002 0.07 0.80 –0.35 0.12 4.4 0.04
C4 0.18 0.03 1.0 0.32 –0.36 0.13 4.7 0.04
C5 0.37 0.14 4.4 0.05 –0.39 0.15 5.7 0.02

a Beta is the standardized regression weight for age; r2 is the coefficient of determination change.

TABLE 3. Effect of Age on Regional Brain Volumes in 34 Nondemented Adults With Down’s Syndrome and 31 Healthy Com-
parison Subjects After the Effect of Total Intracranial Volume Was Controlled

Region of Interest

Linear Regression With Control for Effect of Total Intracranial Volumea

Healthy Comparison Subjects Down’s Syndrome Subjects

Beta r2 F (df=1, 28) p Beta r2 F (df=1, 31) p
Hippocampus

Left 0.07 0.04 0.2 0.68 –0.42 0.17 7.3 0.01
Right 0.19 0.03 1.3 0.26 –0.39 0.15 6.4 0.02

Corpus callosum
Total 0.14 0.02 0.6 0.40 –0.49 0.24 10.1 0.003
Subregions (anterior to posterior)

C1 –0.06 0.004 0.1 0.73 –0.32 0.10 3.4 0.08
C2 –0.22 0.05 1.7 0.20 –0.27 0.07 2.4 0.13
C3 0.05 0.002 0.06 0.81 –0.28 0.08 3.0 0.10
C4 0.17 0.03 0.8 0.36 –0.34 0.11 4.2 0.05
C5 0.36 0.13 4.1 0.05 –0.38 0.14 5.3 0.03

a Beta is the standardized regression weight for age; r2 is the coefficient of determination change.
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caused by Alzheimer’s disease-type neuropathology in the
predementia stage of Down’s syndrome.

Corpus callosum atrophy has been suggested as a puta-
tive marker for the loss of intracortical-projecting neocor-
tical association neurons in Alzheimer’s disease. The cal-
losally projecting neurons belong to a subset of the large
pyramidal neurons in lamina III and V of the association
cortex (52–54), which are highly susceptible to Alzhei-
mer’s disease degeneration (55–57). In agreement with
the early involvement of these neurons, several MRI stud-
ies have reported corpus callosum atrophy in Alzheimer’s
disease that was correlated with PET and EEG measures
of neocortical dysfunction but independent of primary
subcortical fiber degeneration (18–20, 22, 23, 38, 58). Age-
related reductions of corpus callosum areas, predomi-
nant in posterior regions, in our Down’s syndrome sub-
jects are comparable with reductions noted in Alzhe-
imer’s disease patients (18).

The posterior corpus callosum contains axonal projec-
tions from posterior temporal, parietal, and occipital asso-
ciation cortical areas (59–62). This agrees with evidence
(63) that reduced gray matter volumes in the posterior
cerebrum correlated with neuritic plaques and neuro-
fibrillary tangles in elderly Down’s syndrome subjects.
Therefore, age-related decrease of corpus callosum in
nondemented subjects with Down’s syndrome (without
cerebrovascular risk factors and in the absence of MRI
signs of primary subcortical fiber degeneration) most
likely represents involvement of neocortical association
neurons by Alzheimer’s disease-type pathology. Size of
corpus callosum areas C3 and C4 was correlated with over-
all cognitive performance and performance in orienta-
tion, language, and visuospatial tests in the Down’s syn-
drome subjects. Areas C3 and C4 contain fibers from
posterior temporal and from parietal lobes (59, 62). These
data, although limited because of the small study group
size, support the notion that the age-related decrease of
corpus callosum size in Down’s syndrome reflects loss of
neocortical neuronal projections involved in the mainte-
nance of higher cognitive processes.

In an earlier study, we compared the extent of corpus
callosum and hippocampal atrophy in Alzheimer’s disease
patients (32). We had found that patients in mild stages of
Alzheimer’s disease already exhibited posterior corpus
callosum atrophy to a similar degree as hippocampal atro-
phy. The current study extends these findings into the pre-
dementia stage of Alzheimer’s disease-type pathology. We
used a statistical approach based on the analysis of areas
under the receiver operating characteristic curves (64) and
odds ratios based on logistic regression analysis to deter-
mine statistical differences between the age effects on the
corpus callosum and the age effects on the hippocampus.
Age effects were not different between the corpus callo-
sum and the hippocampus in the Down’s syndrome sub-
jects. This finding suggests that neocortical neuronal al-

terations are comparable to those in the allocortex in the

predementia stage of Down’s syndrome.

There are several potential mechanisms that might ac-

count for the correlation between age and corpus callosum

size in Down’s syndrome. One is that corpus callosum de-

velopment is different from normal in Down’s syndrome.

Another is that corpus callosum morphology changes with

age because of Down’s syndrome-specific mechanisms of

neurodegeneration distinct from those of Alzheimer’s dis-

ease. A third is that corpus callosum morphology changes

with age because of Alzheimer’s disease-type pathological

processes.

FIGURE 3. Relationship Between Age and Total and Poste-
rior Corpus Callosum Area in 34 Nondemented Adults With
Down’s Syndrome and 31 Healthy Comparison Subjectsa

a Lines represent linear regression (regression of volumes on age).
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The first mechanism most likely would not lead to an
overestimation of age effects within a Down’s syndrome
group. Rather, developmental abnormalities would in-
crease variability of corpus callosum shape across sub-
jects, thereby reducing the sensitivity of the study to detect
age-related effects. This may contribute to the finding that
there was no significant age effect on anterior corpus cal-
losum, the subregion that is most affected by the develop-
mental abnormality in Down’s syndrome (51).

In contrast, the second and third mechanisms cannot be
distinguished from each other on the basis of this study.
The resemblance between Down’s syndrome and Alzhei-
mer’s disease neuropathology is close, but not perfect. In
1995 Hof et al. (10) reported that plaque density was higher
in many Down’s syndrome subjects compared with Alz-
heimer’s disease patients and more widely distributed
throughout the cortex. Additionally, several studies suggest
cytoskeletal abnormalities in Down’s syndrome (65) and
overexpression of proteins other than amyloid that may
contribute to neurodegeneration (66, 67). Therefore, it
cannot be excluded that part of the strong age effect on
corpus callosum in nondemented Down’s syndrome sub-
jects is related to Down’s syndrome-specific degenerative
processes.

We found an increase of posterior corpus callosum area
C5 with age in the healthy comparison subjects. There is
no final explanation for this finding. Several independent
studies found smaller anterior corpus callosum areas with
higher age but no correlation between age and posterior
corpus callosum areas (19, 68, 69). In 10 healthy subjects,
followed with MRI over an average interval of 24 months,
we found an average rate of atrophy of –0.9% per year for
total corpus callosum and –1.6% per year for anterior
corpus callosum area C1 (21). In contrast, average rate of
atrophy for area C5 was 0.7%. On the basis of these earlier
findings, there seems to be an age-related decrease of an-
terior, but not of posterior, corpus callosum in healthy
subjects, and on average it may even be possible that there
is a slight increase of the measured posterior corpus callo-
sum area with age. These effects may represent changes in
the shape of the corpus callosum, leading to an overesti-
mation of posterior relative to anterior corpus callosum
with higher age. To further support this interpretation, al-
ternative techniques of corpus callosum measurement
would have to be applied, such as deformation-based
morphometry (70, 71). In addition, a relatively larger pos-
terior corpus callosum area has been found in women
than in men (71). This gender effect, however, cannot en-
tirely explain the relative increase of C5 area with age in
our subjects, since this effect remained significant after we
controlled for gender in the linear model. Finally, there
may be age-related changes in the fiber composition of
the corpus callosum (72). All or some of these effects may
contribute to the finding of increased posterior corpus
callosum with age in healthy subjects, but it will require
future study to resolve this question.

In conclusion, our results suggest that with advancing
age, neocortical neuronal alterations are profound in the
predementia stage of Down’s syndrome and that they are
comparable to those that occur in the hippocampus. If
older nondemented adults with Down’s syndrome repre-
sent a model for the predementia stage of Alzheimer’s dis-
ease, our data suggest that neocortical neuronal degener-
ation will be present in this stage. Future longitudinal
studies on morphological changes in Down’s syndrome
and Alzheimer’s disease subjects should help to test these
ideas.
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