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Objective: The N-methyl-D-aspartic acid
(NMDA) class of glutamate receptors has
received attention in the pathophysiology
of schizophrenia because of the similarity
between some schizophrenic symptoms
and symptoms caused by NMDA antago-
nists. To determine if NMDA receptor ab-
normalities were present at the mRNA
level, expression of NMDA receptor (NR)
subunits NR1, NR2A, and NR2B was mea-
sured in specimens from the dorsolateral
prefrontal cortex and the occipital cortex
of elderly patients with schizophrenia and
normal elderly subjects.

Method: Postmortem specimens from
antemortem assessed and diagnosed eld-
erly patients with schizophrenia (N=26)
were compared with those from a neuro-
pathologically and neuropsychiatrically
normal elderly comparison group (N=13)
and from patients with Alzheimer’s disease
(N=10). The mRNA expression of the NR1,
NR2A, and NR2B subunits and of postsynap-
tic density 95 (PSD-95), a protein associated
with postsynaptic NMDA receptors, was
studied with quantitative real-time reverse
transcriptase polymerase chain reaction.

Results: Expression of NR1 and NR2A but
not NR2B subunits was higher in the dor-
solateral prefrontal cortex and the occipi-
tal cortex of patients with schizophrenia
than in the normal and Alzheimer’s dis-
ease groups. In contrast, NR1 expression
was significantly lower in the Alzheimer’s
disease group. Occipital cortex expression
of PSD-95 was higher in the schizophrenic
subjects and correlated strongly with the
expression of NR2A and NR2B in both cor-
tical regions and with expression of NR1 in
the occipital cortex. These results were
not influenced by neuroleptic exposure
history, postmortem interval, or age of
the subject.

Conclusions: NMDA receptor subunits
are abnormally expressed in elderly pa-
tients with schizophrenia. The dispropor-
tionate expression of the NR1 and NR2A

subunits relative to NR2B expression may
have implications for the pathophysiol-
ogy of schizophrenia and the sensitivity of
schizophrenic patients to glutamate and
glutamatergic drugs.

(Am J Psychiatry 2001; 158:1400–1410)

Several neurochemical hypotheses have been pro-
posed to explain the origin of schizophrenia, including ab-
normal dopamine, serotonin (5-HT), γ-aminobutyric acid
(GABA), and/or glutamate neurotransmission in different
regions of the brain (1–8). Abnormalities in the dorsolat-
eral prefrontal cortex have figured prominently in many of
these hypotheses, in part due to results of in vivo imaging
and neuroanatomical studies (9–11), although there is ev-
idence for structural, metabolic, and neurochemical ab-
normalities in many other brain regions, including the
thalamus, the hippocampus, and the cingulate and en-
torhinal cortices (1, 12–19).

Strong evidence supporting an association between
glutamatergic hypofunction and schizophrenia has come
from pharmacological studies showing that N-methyl-D-
aspartic acid (NMDA) receptor antagonists such as phen-
cyclidine and ketamine can induce many of the psychotic
signs and symptoms of schizophrenia in normal subjects,
as well as exacerbate these signs and symptoms in sub-

jects with schizophrenia (20–27). Observations of abnor-
malities in markers of glutamatergic neurotransmission in
the hippocampus and the entorhinal, cingulate, orbital,
and prefrontal cortices of patients with schizophrenia (3,
13, 28–43), the critical role of glutamatergic systems in
learning and memory (44, 45), and the clear evidence for
the neurotoxicity of glutamate (28, 46, 47) have given fur-
ther credence to the potential involvement of the gluta-
matergic system in schizophrenia.

Glutamate receptors comprise four different receptor
families: NMDA, kainate, α-amino-3-hydroxy-5-methyl-
isoxazole-4-propionate (AMPA), and metabotropic recep-
tors (48, 49). Because glutamate is the principal excitatory
neurotransmitter in the brain, its receptors are ubiqui-
tously but relatively discretely distributed throughout the
neuraxis (50–53). Although there is evidence suggesting
that kainate receptors are predominantly presynaptic and
that AMPA and NMDA receptors are predominantly post-
synaptic and often coexpressed, AMPA and NMDA recep-
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tors can also be localized to presynaptic sites (51, 54). Each
receptor is assembled from multiple subunits that are en-
coded by different genes. The NMDA receptor is assem-
bled from a combination of four–five subunits designated
NR1 and NR2A–D. The NR1 subunit is often considered
obligatory for functional NMDA receptor assemblies, but
the remaining subunits can vary. Additional heterogeneity
is conferred by eight alternative splice variants of the NR1

subunit that have different expression patterns within the
human brain (55). The pattern of subunits assembled to
form specific glutamate receptors varies from brain region
to brain region (55). In the cerebral cortex and the hippo-
campus, NMDA receptors are assembled from NR1, NR2A,
and NR2B subunits, and the NR2C and NR2D subunits are
generally thought not to be expressed at appreciable levels
(54, 56) (but see reference 38). Since the various combina-
tions of NMDA receptor subunits confer different sensitiv-
ities to various endogenous and exogenous glutamatergic
ligands and since NMDA receptors can be localized pre-
and postsynaptically (57–59), the release of glutamate
from any given neuron or a pharmacologic glutamate
ligand can have a wide range of effects in different brain
regions and on glutamatergic function and activity.

At a postsynaptic level, the clustering, assemblage, and
anchoring of NMDA receptors is governed in part by a pro-
tein family known as postsynaptic density 95/synapse-as-
sociated protein 90 (PSD-95/SAP-90) that appears also to
play an important role in the binding and assemblage of
signal transduction complexes (60–65). PSD-95 is exclu-
sively localized with postsynaptic NMDA receptor-related
densities (62, 66), with significantly greater association
with the NR2A and NR2B subunits than with the NR1 sub-
unit, although it does co-localize and associate with some
splice variants of the NR1 subunit (60, 62). PSD-95 also
plays an important role in signal transduction, nitric oxide
neurotoxicity linked to NMDA receptor activation (67, 68),
and NMDA-induced long-term potentiation (69). Because
of these characteristics, PSD-95 is important in providing
a functional scaffold for postsynaptic NMDA receptors
and in mediating intracellular NMDA receptor functions.

The study described here sought to determine whether
the expression of genes encoding for NR1, NR2A, and NR2B

subunits of the NMDA receptor and their postsynaptic an-
choring protein PSD-95 are specifically altered in the dor-
solateral prefrontal cortex of patients with schizophrenia.
The dorsolateral prefrontal cortex was studied in postmor-
tem brains of elderly schizophrenic subjects who had been
antemortem diagnosed with DSM-IV criteria (70–72), had
no other neuropsychiatric disease, had died of natural
nonviolent causes without coma, had no evidence of sig-
nificant neuropathology (73), and had clear documenta-
tion of neuroleptic drug exposure during the months and
weeks before death. Specimens of the dorsolateral prefron-
tal cortex from these subjects were compared to identically
treated and dissected specimens from normal elderly sub-
jects who were found by chart review and caregiver inter-
views to have no neuropsychiatric or neurological diseases
and who had no significant neuropathology. Specificity to
schizophrenia was tested by the inclusion of specimens
from patients with Alzheimer’s disease. To determine the
specificity of findings to the dorsolateral prefrontal cortex,
specimens from the primary occipital cortex (Brodmann’s
area 17) from the same subjects were dissected and as-
sessed for NMDA receptor and PSD-95 transcript mRNA
abundance by using identical procedures.

Method

Human Postmortem Tissue

Frozen postmortem brain samples from subjects diagnosed
with DSM-IV schizophrenia (N=26), normal elderly comparison
subjects (N=13), and subjects with Alzheimer’s disease (N=10)
were obtained from the Brain Bank, Department of Psychiatry,
Mount Sinai/Bronx Veterans Administration Medical Center. The
sex distribution and mean age, postmortem interval, and tissue
pH of the cohorts are shown in Table 1. All schizophrenic subjects
had been hospitalized for the long term at Pilgrim Psychiatric
Center (New York). Complete medical charts were available for all
subjects, and 16 of the 26 schizophrenic subjects had been pro-
spectively diagnosed and neuropsychiatrically assessed by a team
of research clinicians (70–72). Patients who died before the ante-
mortem assessment by the research team were diagnosed by the

TABLE 1. Characteristics of Postmortem Brain Tissue From Patients With Schizophrenia, Normal Comparison Subjects, and
Patients With Alzheimer’s Disease

Tissue From Patients With Schizophrenia Tissue From Normal Comparison Subjects

Tissue From
Patients With
Alzheimer’s

Disease (N=10)Characteristic
All Patients

(N=26)

Patients Matched 
for Age With

Normal Comparison 
Subjects (N=10)

All Subjects
(N=13)

Subjects Matched
for Age With
Patients With

Schizophrenia (N=10)
N N N N N

Subjects’ gender
Male 17 4 5 2 4
Female 9 6 8 8 6

Mean SD Mean SD Mean SD Mean SD Mean SD

Subjects’ age at death (years) 72.3 12.0 81.1 9.3 82.8 10.0 81.5 11.1 79.8 9.8
Postmorten interval (hours) 14.6 9.5 14.2 8.4 8.0 5.5 8.0 5.7 10.1 9.3
pH 6.33 0.32 6.36 0.31 6.29 0.31 6.23 0.34 6.27 0.37
Storage time interval (days) 2128.0 1029.5 1998.6 995.7 1759.4 1006.2 1815.9 1129.6 2198.9 676.2
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same team of research clinicians who conducted diagnostic re-
views of all medical charts (73). The reliability of these postmor-
tem diagnostic procedures was confirmed by assessing an inde-
pendent group of 35 subjects from the same institution by using
structured interviews and blindly by using chart review. Inter-
rater/interassessment reliability was 0.86. All assessment and
postmortem evaluations and procedures were approved by the
institutional review boards of the Pilgrim Psychiatric Center, the
Mount Sinai School of Medicine, and the Bronx VA Medical Cen-
ter. All patients had thorough neuropathologic characterization
to rule out associated neurologic complications such as Alzhei-
mer’s disease and multi-infarct dementia (73). Normal compari-
son subjects had no history of any psychiatric or neurologic dis-
orders and no discernible neuropathologic lesions. Nine of the
schizophrenic subjects had not received neuroleptic medications
for at least 6 weeks before death (range=0–124 weeks). For com-
parison purposes and to enable assessment of specificity of the
findings to schizophrenia, brain tissue from 10 subjects with a di-
agnosis of definite Alzheimer’s disease (according to criteria of
the Consortium to Establish a Registry for Alzheimer’s Disease)
(74) was also studied. The overall characteristics and diagnostic
procedures for these Alzheimer’s disease subjects have been de-
scribed extensively (75, 76).

Each brain was divided midsagittally at the time of extraction.
The left half was sectioned in 6–8-mm coronal slabs, immedi-
ately snap-frozen in liquid nitrogen-cooled isopentane, and
stored at –80°C. Gray matter from the frozen dorsolateral pre-

frontal cortex (77, 78) (Brodmann’s area 46) and occipital cortex
(Brodmann’s area 17) was dissected from coronal sections of fro-
zen brain (–80°C). Brodmann’s area 17 was identified as the area
containing the band of Gennari in the coronal section from ap-
proximately 2 cm rostral to the occipital pole. The dissected tis-
sues were pulverized at –190°C into a fine powder, aliquoted into
individual Eppendorf tubes, and stored at –80°C until use.

Quantitation of NMDA Receptor Expression

RNA isolation. Total RNA was isolated from 50 mg of tissue
with the guanidinium isothiocyanate method (79) by using the
ToTALLY RNA kit (Ambion, Austin, Tex.) according to the manu-
facturer’s protocol. To remove genomic DNA contamination, iso-
lated RNA samples were then treated with 40 units of DNase I
(Ambion) in the presence of 120 units of RNaseOUT (GibcoBRL,
Invitrogen, Carlsbad, Calif.) for 1 hour at 37°C. The yield of total
RNA determined by absorbance at 260 nM ranged from 15 to 30
µg per 50 mg of brain tissue. The 260/280 nM ratios of the samples
were >2.1. The yield and quality of total RNA was also analyzed by
using agarose gel electrophoresis.

Reverse transcriptase reaction. Total RNA (∼ 2 µg) was used in
20 µl of reverse transcriptase reaction to synthesize cDNA, by us-
ing a ThermoScript RT-PCR System kit (GibcoBRL) and random
hexamers as primers. The cDNA was diluted 50 times with water,
and 5 µl of the diluted cDNA was amplified in 25 µl of polymerase
chain reaction (PCR) mix.

TABLE 2. Primers and Molecular Beacons Used in Real-Time Reverse Transcriptase Polymerase Chain Reaction Assessing
Gene Expression of N-Methyl-D-Aspartic Acid (NMDA) Receptor (NR) Subunits, Postsynaptic Density 95 (PSD-95), and the En-
dogenous Reference β-Actin in Postmortem Brain Specimens From Human Subjects and Rats

Gene Primer or Molecular Beacon Sequencea

National Center 
for Biotechnology 

Information
Accession Number

Polymerase 
Chain Reaction 

Product Size 
(base pairs)

Human
Primer

NR1 Forward-5′-AGAGCTCCGTGGATATCTACTTCC-3′ NM_000832 343
Reverse-5′-GAGTCACATTCCAGATACCGAACC-3′

NR2A Forward-5′-GCACAGAATCCAAAGCGAACT-3′ U90277 120
Reverse-5′-TCTCTGCTGTTGCCTCATCCC-3′

NR2B Forward-5′-AGCTTCACGCATTCTGACTG-3′ U90278 130
Reverse-5′-CTTGGTACACGTTGCTGTCC-3′

PSD-95 Forward-5′-AGCCCCAGGATATGAGTTGC-3′ U83192 127
Reverse-5′-GATGTGTGGGTTGTCAGTGC-3′

β-Actin Forward-5′-TCACCCACACTGTGCCCATCTACGA-3′ NM_001101 295
Reverse-5′-CAGCGGAACCGCTCATTGCCAATGG-3′

Molecular beacon
NR1-MB TET-5′-CCGAGCATGTACCGGCATATGGAGAAGCGCTCGG-3′-DABCYL
NR2A-MB TET-5′-CGCAGCGATAGTGAATCCTGGCGTATGGGCTGCG-3′-DABCYL
NR2B-MB TET-5′-CGCAGCGAGGTAGAGAGAACGTTCGGGAGCTGCG-3′-DABCYL
PSD-95-MB FAM-5′-CTGCGCGAGGGGGAGATGGAATACGAGGAAGCGCAG-3′-DABCYL
β-Actin-MB FAM-5′-CCGGTCAGCCGTGGCCATCTCTTGCTCGAAGGACCGG-3′-DABCYL

Rat
Primer

NR1 Forward-5′-GCAAGAATGAGTCAGCCCAC-3′ U11418 186
Reverse-5′-CAGTCACTCCGTCCGCATAC-3′

NR2A Forward-5′-CGGACCCACTCGCTAAAGAG-3′ NM_012573 105
Reverse-5′-GTTATCTGGCTCCCTGTGGC-3′

NR2B Forward-5′-CAACATCCTACGCTTGCTCC-3′ NM_012574 111
Reverse-5′-TCGTAGACGGAGGACTCTCG-3′

β-Actin Forward-5′-AGGCATCCTGACCCTGAAGTAC-3′ V01217 J00691 249
Reverse-5′-GAGGCATACAGGGACAACACAG-3′

Molecular beacon
NR1 FAM-5′-CGCAGCGGTGGCACAGGCAGTTCACGAAGCTGCG-3′-DABCYL
NR2A FAM-5′-CGCAGCGGCCCGGCTTGAGGTTTCTGAAGCTGCG-3′-DABCYL
NR2B FAM-5′-CGCAGCAAGTCCAGGGCACTCTGAGGGGGCTGCG-3′-DABCYL
β-Actin FAM-5′-CGCACGGGCTGGGGTGTTGAAGGTCTCACGTGCG-3′-DABCYL

a TET=tetrachloro-6-carboxyfluorescein; FAM=fluorescein; DABCYL=4-(4′-dimethylaminophenylazo) benzoic acid.
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Primer and molecular beacon design. Real-t im e revers e
transcriptase polymerase chain reaction (RT-PCR) was used for
quantitation of NMDA receptor and PSD-95 expression. PCR
primers were designed by using Vector NTI software (InforMax,
North Bethesda, Md.). NR1 primers were designed to ignore dis-
tinctions between known splicing variants of this NMDA recep-
tor subunit. Molecular beacons were used as fluorogenic probes
in the real-time PCR. Molecular beacons are hairpin-shaped
molecules with an internally quenched fluorophore whose fluo-
rescence is restored when they bind to their target nucleic acids
(80–83). The molecular beacons were designed by using a DNA
folding program (available at http://www.ibc.wustl.edu/∼ zuker)
to estimate the stability of the hairpin stem. The molecular bea-
cons used in the experiments contained probe sequences that
were 22–25 nucleotides long and arm sequences that were six
nucleotides long. The melting temperature of the hairpin stems
and probe sequences was 64–66°C. Fluorescein (FAM) or tetra-
chloro 6-carboxyfluorescein (TET) fluorophores were covalently
linked to the 5′ end of the molecular beacons, and the quencher
4-(4′-dimethylaminophenylazo) benzoic acid (DABCYL) was co-
valently linked to the 3′ end. The primers and molecular beacons
were synthesized either commercially (IDT, Coralville, Iowa) or
by one of us (S.A.E.M.). The primer pair and molecular beacon
sequences that were used to detect each of the mRNAs are shown
in Table 2.

Real-time PCR. Real-time PCR analysis was performed by using
an ABI Prism 7700 Sequence Detector (Applied Biosystems, Fos-
ter City, Calif.). Each 25 µl PCR reaction contained 5 µl of the rele-
vant cDNA, 200 nM of molecular beacon, 500 nM of each primer,
1 unit of AmpliTaq Gold DNA polymerase (Applied Biosystems),
250 µM of each deoxy-nucleotide triphosphate (dNTP), 4 mM
MgCl2, 50 mM KCl, and 10 mM Tris-HCl (pH 8.3). The thermal cy-
cling program consisted of 10 minutes at 95°C to activate the
polymerase, followed by 10 cycles of 15 seconds at 95°C and 45
seconds at 70–61°C (touch-down PCR, annealing temperature
was decreased 1°C after each cycle). This touch-down step was
followed by 35 cycles of 15 seconds at 95°C and 1 minute at 60°C.
Fluorescence was monitored during the 60°C annealing-exten-
sion steps. The reactions were quantitated by selecting the ampli-
fication cycle when the PCR product of interest was first detected
(threshold cycle [Ct]).

To determine sensitivity of the assays, the amplification of each
mRNA in serial dilutions of cDNA derived from pooling of human
cortical specimens from 10 randomly selected subjects (pooled
sample) was measured. Figure 1 shows the amplification of NR1
mRNA in 10-fold dilutions of pooled cDNA and the threshold cy-
cle values of these amplifications plotted against the log of the rel-
ative initial amount of cDNA. In assays that use PCR to amplify a
target sequence exponentially, there is an inverse linear relation-
ship between the threshold cycle and the logarithm of the num-
ber of target molecules that were present initially (84). Theoreti-
cally, the slope of this linear curve is expected to be –3.32. In the
results shown on Figure 1, a linear relationship between threshold
cycle and the initial amount of NR1 mRNA was demonstrated for
four orders of magnitude. The slope of the curve was –3.23, which
was very close to theoretically expected value. These data show
the broad dynamic range of the NR1 mRNA quantitation. Similar
results were obtained for each amplification assay performed in
this study.

To account for different degrees of RNA degradation and other
technical artifacts, relative quantitations of the expression levels
of NR1, NR2A, NR2B and PSD-95 genes were performed as de-
scribed in User Bulletin #2 for the ABI PRISM 7700 Sequence De-
tection System: Relative Quantitation of Gene Expression; Com-
parative Ct Method: Separate Tubes, product #4303859 (Applied
Biosystems). The expression level of each gene of interest was
normalized to the expression level of the endogenous reference

(β-actin) in each sample. This relative value was further normal-
ized to the relative expression of the same gene in the pooled
sample (see the preceding paragraph). Pooled cDNAs were run in
every plate simultaneously with experimental samples. To avoid
competition, only one mRNA was amplified in each PCR (mono-
plex). All samples were run in triplicate.

To measure the level of contamination with chromosomal
DNA, all RNA samples that were not treated with reverse tran-
scriptase were subjected to PCR by using NR1 or NR2A primers.
The products of the PCRs were analyzed on EtBr-stained agarose
gels. In contrast to the respective cDNA templates, the RNA sam-
ples showed no PCR products. Random RNA samples (N=10) were
also subjected to real-time PCR by using β-actin primers and a
molecular beacon. The RNA samples showed at least 4.5 orders of
magnitude fewer initial template molecules than the respective
cDNAs templates (the difference in threshold cycle between
RNAs and cDNA in each sample was at least 15 cycles), demon-
strating negligible amounts of genomic DNA contamination
(data not shown).

NMDA Receptor Expression in Neuroleptic-Treated Rats

To assess the effects of neuroleptic exposure on NMDA receptor
mRNA, groups of six male Sprague-Dawley rats (6–8 months of age)
received daily subcutaneous injections of haloperidol (2 mg/kg) or

FIGURE 1. Dynamic Range of the mRNA Quantitation Assay
for NMDA Receptor 1 (NR1)a

a Panel A: Amplification of NR1 mRNA in 10-fold dilutions of pooled
cDNA. Panel B: Threshold values of amplifications of NR1 mRNA
plotted against the log of the relative initial amount of cDNA. Simi-
lar results were obtained for the amplification assays performed for
NR2A, NR2B, PSD-95 and β-actin.
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saline vehicle for 21 days. The specific haloperidol dosing parame-
ters were selected because previous studies (85) have shown them
to be effective in regulating dopamine receptor mRNA expression
in the rat brain. The rats were sacrificed by decapitation 24 hours
after the last injection, and their brains were rapidly removed. Cor-
tices were dissected and immediately frozen on dry ice. NMDA re-
ceptor expression was assessed by using the procedures described
earlier except that primers and molecular beacons specific to rat
NMDA receptor subtypes were used (Table 2).

Statistical Analysis

Analysis of variance (ANOVA) and covariance (ANCOVA) fol-
lowed by Newman-Keuls tests and t tests were used to analyze the
results of these studies. ANOVA was used for analyses of data from
the entire cohort. ANCOVA was used for analyses of data from the
entire cohort, with age of the subject at the time of death as a co-
variate. T tests were used to compare differences between groups
when the groups had been matched for age at the time of death.
Because each brain region and each NMDA receptor subunit was
measured independently with different probes and in different
experiments, differences between groups for the expression of
each gene were assessed with independent tests of significance.
Pearson product moment correlations were used to assess the re-
lationship between continuously distributed variables. Statistical
analyses were performed with Statistica for Windows (release 5.5,
Statsoft Inc., Tulsa, Okla.) or SPSS for Windows (version 10, SPSS
Inc., Chicago).

Results

The relative abundance of NMDA receptor subunit ex-
pression in the dorsolateral prefrontal cortex and the oc-
cipital cortex for each group is shown in Figure 2. NR1 sub-
unit expression in the dorsolateral prefrontal cortex was
significantly higher in the schizophrenia group and signif-
icantly lower in the Alzheimer’s disease group, compared
with the normal elderly group (F=12.75, df=2, 46, p=
0.00004) (Newman-Keuls tests: schizophrenia versus nor-
mal elderly, p=0.009; Alzheimer’s disease versus normal
elderly, p=0.05; Alzheimer’s disease versus schizophrenia,
p=0.0002). Higher levels of NR1 subunit expression were
evident in the occipital cortex of the schizophrenia sub-
jects than in the normal subjects, but not in the Alzhei-
mer’s disease subjects (F=6.79, df=2, 46, p=0.003) (New-
man-Keuls tests: schizophrenia versus normal elderly, p=
0.02; Alzheimer’s disease versus normal elderly, p=0.94).
Expression of NR2A in the dorsolateral prefrontal cortex
was not significantly different in either the schizophrenic
or Alzheimer’s disease subjects relative to normal elderly
subjects (p>0.14, Newman-Keuls). However, the level of
NR2A expression in the occipital cortex of the schizo-
phrenic subjects was significantly higher than that of the
normal elderly subjects (F=5.5, df=2, 46, p=0.007; p=0.04,
Newman-Keuls). The lower level of NR2A expression in the
occipital cortex of the Alzheimer’s disease group, relative
to the normal comparison group, did not reach statistical
significance (p=0.40, Newman-Keuls). The expression of
the NR2B subunit was not significantly altered in any
group in either of the brain regions examined (F<0.9, df=2,
46, p>0.4). The expression of the mRNA for PSD-95 was
also significantly higher in the schizophrenia subjects
than in the normal elderly subjects (Figure 2). The schizo-
phrenia-related difference in the expression of PSD-95
was most evident in the occipital cortex (F=4.31, df=2, 46,
p=0.02; schizophrenia versus normal elderly, p=0.04, New-
man-Keuls) but did not reach statistical significance in the
dorsolateral prefrontal cortex (p=0.31, Newman-Keuls).
PSD-95 gene expression was unchanged in the brains of
the Alzheimer’s disease cohort.

FIGURE 2. Relative Gene Expression of N-Methyl-D-Aspartic
Acid (NMDA) Receptor Subunits NR1, NR2A, and NR2B and
of Postsynaptic Density 95 (PSD-95) in the Dorsolateral Pre-
frontal Cortex and the Occipital Cortex of Normal Compar-
ison Subjects, Patients With Schizophrenia, and Patients
With Alzheimer’s Disease

a Significantly different from comparison group (p<0.05). Newman-
Keuls tests were used for comparisons of entire groups. T tests (df=
18) were used for comparisons of age-matched groups (10 patients
with schizophrenia and 10 normal comparison subjects).
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The schizophrenic cohort was significantly younger
than the normal elderly group (Table 1), and age at death
correlated significantly with the expression of the NR1 and
NR2A subunits of the NMDA receptor (r<−0.31, df=47,
p<0.04) when the entire cohort was considered. The ex-
pression of the NMDA receptor subunits and PSD-95
mRNA did not correlate significantly with age within the
schizophrenia cohort despite a relatively broad age range
of 52–97 years. Two approaches were taken to determine
whether age at death affected the differences between
groups. First, ANCOVAs, with age as a covariate, were
done. The inclusion of age as a covariate did not alter the
pattern or the statistical significance of the results in any
way (e.g., the ANCOVA comparing NR1 expression in the
dorsolateral prefrontal cortex was significant [F=9.6, df=2,
45, p=0.0003]). Second, the schizophrenic and normal
elderly groups were subgrouped into two groups of 10
subjects each, matched for age to within 1 year. The differ-
ences in the expression of the NMDA receptor subunits
and PSD-95 were reassessed by using t tests. As for the
ANCOVA, the same significant group differences (t<−2.2,
df=18, p<0.04) found when analyzing the entire cohort
were observed when comparing the age-matched schizo-
phrenic and normal elderly subjects.

Table 3 shows the correlation of expression of the differ-
ent NMDA receptor subunit mRNAs with each other and
with PSD-95 in each brain region for the entire cohort.
Nearly identical results were obtained when separate cor-
relational analysis was performed for the schizophrenia
subjects, the Alzheimer’s disease subjects, and the normal
elderly subjects. Similarly, these correlations were not un-
duly influenced by differences in the age of the subjects,
since the results were nearly identical when the contribu-
tion of age was factored out by using partial correlation
analyses. PSD-95 gene expression correlated best with the
expression of NR2A and NR2B in the dorsolateral prefron-
tal cortex and with NR1 gene expression in the occipital
cortex but not with NR1 gene expression in the dorsolat-
eral prefrontal cortex. Comparison of the correlations of
PSD-95 with NR1, NR2A, and NR2B expression in the dor-
solateral prefrontal cortex versus the occipital cortex (us-
ing Fisher’s r-to-z transformation [86]) showed that the
correlations of PSD-95 with NR1 and NR2A were signifi-
cantly stronger in the occipital cortex than in the dorso-
lateral prefrontal cortex (NR1: t=5.5, df=47, p<0.001; NR2A:
t=4.1, df=47, p<0.001).

All of the schizophrenic subjects had been exposed to
neuroleptics for decades. As mentioned previously, the his-
tory of neuroleptic exposure for each subject was assessed
in detail by examining his or her medical chart. Of the 26
schizophrenic subjects, 13 had been exposed to neurolep-
tics to within 1 week of death, while neuroleptic medica-
tions had been discontinued for the remaining 13 subjects
from 1 week before death to as long as 124 weeks before
death. The neuroleptic-free interval did not correlate with
the expression of any of the genes studied (r=–0.16 to 0.11,
df=24, p>0.42). To further assess the possible influence of
acute neuroleptic exposure on NMDA and PSD-95 gene ex-
pression, the schizophrenic group was subdivided into
those who had been exposed to neuroleptics to within 6
weeks of death (N=16) and those who had been neurolep-
tic free more than 6 weeks (N=9) (data missing for one sub-
ject). Comparison of NR1, NR2A, NR2B, and PSD-95 gene ex-
pression in the dorsolateral prefrontal cortex and occipital
cortex of these two groups did not reveal any significant
differences (t tests, df=23, p>0.19, data not shown). As a fur-
ther test of the potential influence of neuroleptic exposure
on the expression of the genes of interest, NR1, NR2A, and
NR2B gene expression was compared in the cortices of rats
that had been treated with a daily 2-mg/kg dose of halo-
peridol for 3 weeks. No significant differences in NR1, NR2A,
and NR2B gene expression were detected in the cortices of
rats treated with haloperidol versus saline-treated rats
(t<1.4, df=14, p>0.19).

Discussion

The results of this series of studies have shown that the
expression of genes encoding for the predominant corti-
cally expressed subunits of the NMDA receptor is ab-
normal in the dorsolateral prefrontal cortex and occipital
cortex of schizophrenic subjects hospitalized for the long
term who died of natural causes in old age. The expression
of the NR1 subunit was consistently higher in both regions
of the cortex in the schizophrenic subjects than in normal
elderly comparison subjects, and the expression of the
NR2A subunit was nominally higher in the dorsolateral
prefrontal cortex and significantly higher in the occipital
cortex in the schizophrenic subjects. The expression of the
NR2B subunit was not significantly altered in either region
in the schizophrenic subjects. In the schizophrenic sub-
jects, the higher level of NMDA receptor subunit gene ex-

TABLE 3. Correlation of Relative Gene Expression of N-Methyl-D-Aspartic Acid (NMDA) Receptor Subunits and Postsynaptic
Density 95 (PSD-95) in the Dorsolateral Prefrontal Cortex and the Occipital Cortex of Patients With Schizophrenia, Normal
Comparison Subjects, and Patients With Alzheimer’s Disease (N=49)

NMDA Receptor Subunit

Gene Expression in Dorsolateral Prefrontal Cortex Gene Expression in Occipital Cortex

NR2A NR2B PSD-95 NR2A NR2B PSD-95

ra p ra p ra p ra p ra p ra p
NR1 0.54 0.0001 0.18 0.23 0.25 0.10 0.82 0.0001 0.36 0.01 0.81 0.0001
NR2A 0.72 0.0001 0.47 0.001 0.72 0.0001 0.89 0.0001
NR2B 0.51 0.0001 0.61 0.0001
a df=47
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pression was accompanied by comparable higher levels of
cortical-region-specific expression of PSD-95, which is
associated with postsynaptic NDMA receptor special-
izations. This dysregulation in NMDA receptor subunit
expression was specific to the schizophrenic subjects, in-
sofar as identically treated and studied specimens from
Alzheimer’s disease patients showed lower than normal
levels of NR1 expression, as expected from previous stud-
ies (87, 88). Replication of the finding of lower levels of NR1

expression in Alzheimer’s disease confirms the validity of
the methods used in this study and adds to the reliability
of the findings in the schizophrenic tissues.

The altered expression pattern of the NMDA receptor
subunits is unlikely to have been a result of the younger
age of the schizophrenia group, because group differences
persisted in analyses that included age as a covariate and
were evident even when subgroups of schizophrenics and
normal elderly subjects were matched closely for age. In
addition, age did not correlate with the expression pattern
of any of the genes in the schizophrenia cohort, despite
those subjects’ relatively broad age range. It is possible
that the observed differences between the normal elderly
subjects and schizophrenic subjects resulted not only
from schizophrenia but from an interaction between
schizophrenia and the age of the subjects. Only replication
of the study in a younger cohort can address this question.
Similarly, it is noteworthy that the schizophrenic subjects
in this study were chronically and severely ill and had re-
quired hospitalization for most of their lives. Whether the
observed changes in NMDA receptor subunit and PSD-95
gene expression will generalize to less severely affected
subjects is another question that must await replication of
the study in a less severely affected cohort.

The possibility that the observed differences in NMDA
and PSD-95 gene expression were influenced by exposure
to neuroleptics cannot be excluded, but it is unlikely that
the higher levels of NMDA receptor subunit gene expres-
sion were due to acute neuroleptic effects. Gene expres-
sion did not correlate with the amount of time subjects
had been medication free before death; it was not differ-
entially affected when the schizophrenia group was strati-
fied into subgroups who had taken neuroleptics until the
time of death versus those who had been neuroleptic free
for 6–124 weeks; and it was not observed in the cortices of
rats treated subchorionically with haloperidol for 3 weeks.
That the observed NMDA receptor subunit gene expres-
sion was unlikely to have been directly influenced by neu-
roleptic exposure is supported further by other studies
that have failed to find increases in cortical NMDA recep-
tor gene expression after neuroleptic treatment (89–91).

The complexity of the glutamate system and its recep-
tors is paralleled by the complexity of findings with re-
spect to the expression of glutamate receptors in the brain
in schizophrenia. Different studies have reported different
findings in different regions of the brains of schizophrenic
subjects. One study, which used in situ hybridization tech-

niques and specimens from the same collection used here,
reported higher levels of NR1 and NR2A expression in the
prefrontal cortex of schizophrenic subjects (37), substanti-
ating the results reported here with different detection
techniques and different molecular probes. Other studies
have reported higher levels of glutamate receptor binding
in the orbital frontal cortex and the superior temporal gy-
rus that are in general agreement with the current findings
(34, 35, 41). Results from another in situ hybridization
study found that while the overall abundance of NMDA re-
ceptor subunits did not differ in the frontal cortices of
schizophrenic subjects relative to comparison subjects,
there was a shift toward increased abundance of the NR2

subunit class, especially NR2D subunits (38). Recently, Gao
et al. (42) reported lower NR1 expression and higher NR2B

expression in several subregions of the hippocampus of
schizophrenic subjects, whereas the expression of the
NR2A subunit was unchanged in the same regions. These
and other studies (59) all support the conclusion that
while the expression of glutamate receptors may be com-
plex, it is nevertheless significantly affected in schizophre-
nia, and the expression of different subunits of NMDA re-
ceptors is significantly altered in different brain regions.

The observation of higher levels of NMDA receptor NR1

and NR2A subunit gene expression associated with schizo-
phrenia raises the question of the functional consequences
of this apparent change and its relationship to gluta-
matergic dysfunction hypotheses of schizophrenia. Knowl-
edge of a possible disequilibrium in subunit expression
does not directly provide an understanding of the atten-
dant functional consequences, but the literature suggests
that functional consequences are a likely result of altered
NMDA gene expression (59). For example, receptors as-
sembled in vitro from the NR1 subunit alone bind glycine
antagonists, but the assembly of both NR1 and NR2A sub-
units is required for binding to glutamate antagonists and
channel-blocking agents (92). Similarly, the channel prop-
erties and antagonist affinities of NMDA receptors assem-
bled from combinations of NR1 and NR2A are different
from receptors assembled from the NR1 and NR2B subunits
(57, 58). The subunit composition of NMDA receptors can
also significantly influence their susceptibility to neurotox-
icity and to cell death. Cell lines transfected with NR1/NR2A

subunits are more susceptible to cell death than those
transfected with combinations of NR1/NR2B, which are
more susceptible than cells transfected with NR1/NR2C

subunits (47).

The potential functional, and perhaps deleterious, con-
sequences of higher levels of NR1 and NR2A gene expres-
sion in schizophrenia are further suggested by the clear
evidence for increased PSD-95 gene expression and the
correlation of PSD-95 gene expression with NMDA recep-
tor subunit expression. PSD-95 was significantly overex-
pressed in the occipital cortex, and its expression corre-
lated most strongly with the expression of NMDA receptor
subunit mRNA in this region, although correlations be-
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tween PSD-95 mRNA and NR2A and NR2B mRNA in the
dorsolateral prefrontal cortex were also significant and
relatively high. Given the importance of the C-terminal
domains of NR2A and NR2B to receptor function and to in-
teraction with PSD-95 (93, 94), it is likely that the NMDA
receptors formed by the higher levels of NR1 and NR2A

subunits were appropriately clustered and anchored with
at least some functional integrity. The coexistence of nitric
oxide immunoreactivity and NMDA receptors on cortical
spiny neurons (63, 68) and PSD-95 mediation of nitric ox-
ide neurotoxicity induced by NMDA receptor activation
(67) raise the possibility that higher than normal levels of
NMDA receptor subunit expression have detrimental
consequences.

The relationship between NR1, NR2A, and NR2B subunits
and PSD-95 in the dorsolateral prefrontal cortex was dif-
ferent than that in the occipital cortex. PSD-95 expression
correlated exceptionally strongly with NR1, NR2A, and
NR2B expression in the occipital cortex, but it did not
correlate significantly with NR1 subunit expression in the
dorsolateral prefrontal cortex despite significantly higher
levels of NR1 expression in both brain regions of schizo-
phrenic subjects. Furthermore, PSD-95 correlated less
strongly with NR2A and NR2B expression in the dorsolat-
eral prefrontal cortex than in the occipital cortex. These
results suggest that NMDA receptors are expressed pre-
dominantly at postsynaptic sites in the occipital cortex
but that their distribution or composition may be different
in the dorsolateral prefrontal cortex. These results also
raise the possibility of local regulation of glutamatergic
neurotransmission and suggest that different components
of the glutamatergic systems may be affected differentially
in different brain regions.

The divergent correlations between the NMDA receptor
subunit and PSD-95 expression in the dorsolateral prefron-
tal cortex and occipital cortex could imply that the pre- and
postsynaptic distribution of NMDA receptors is different in
the two regions. Thus, if NMDA receptors were distributed
both pre- and postsynaptically in the dorsolateral prefron-
tal cortex, but predominantly postsynaptically in the oc-
cipital cortex, then one would expect the correlations be-
tween the NMDA receptor subunits and PSD-95 to be
significantly higher in the occipital cortex than in the dor-
solateral prefrontal cortex. The lack of significantly higher
levels of PSD-95 expression in the dorsolateral prefrontal
cortex of the schizophrenic subjects would then suggest
that the observed overexpression of the NR1 subunit in that
region is likely presynaptic in origin. An alteration in the
balance of pre- and postsynaptic NMDA receptors in the
dorsolateral prefrontal cortex of schizophrenic subjects
could have broad implications, not only with respect to
glutamatergic function but also relative to the responsivity
to glutamatergic agonists and antagonists.

A parsimonious, yet perhaps simplistic overall interpre-
tation of the results of this study is that some NMDA re-

ceptors are more abundant in the dorsolateral prefrontal
cortex and occipital cortex of schizophrenic subjects than
in those regions in comparison subjects. This interpreta-
tion is concordant with a hypoglutamatergic state hy-
pothesis of schizophrenia, especially given the strong
possibility that the increased expression of at least some
of these receptor subunits is at postsynaptic sites. A tradi-
tional pharmacological interpretation would suggest that
lower levels of glutamatergic activity would lead to higher
levels of expression of postsynaptic glutamate receptors.
In fact, animal studies have shown that NMDA receptor
antagonism with phencylclidine can increase the expres-
sion of NR1 mRNA (95). At first glance, however, this inter-
pretation of the results is at odds with pharmacological
studies of schizophrenia with NMDA receptor antago-
nists. Studies of the psychotomimetic effects of uncom-
petitive NMDA receptor antagonists have been instru-
mental in the development of hypotheses that posit a
hypofunctional postsynaptic glutamatergic system in
schizophrenia. Some recent evidence suggests that the
interpretation of the results of studies with uncompetitive
NMDA antagonists may be more complex and that the
symptoms induced by ketamine could be a result of in-
creased glutamate release and/or increased activation of
postsynaptic glutamate receptors (24). Because of the
presynaptic localization of some NMDA receptors (51,
54), a hyperglutamatergic state and increased glutamate
release could result from ketamine administration and its
interaction with presynaptic NMDA receptor elements
(54, 96). The increased glutamate release could then act
on postsynaptic glutamatergic receptors (e.g., AMPA) and
provoke the psychotomimetic symptoms observed with
glutamate receptor antagonists. If this interpretation of
overexpressed NMDA receptors at presynaptic sites in the
dorsolateral prefrontal cortex of schizophrenic patients is
correct, then it would be reasonable to assume that NMDA
antagonists would exacerbate the symptoms of schizo-
phrenia. Thus, although the results of the current study
and those cited earlier support the view that cortical
glutamatergic systems are significantly affected and ab-
normal in schizophrenia, they highlight the need for fur-
ther and more detailed studies to elucidate the precise
nature of the glutamatergic abnormality.
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