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Objective:  Functional magnetic resonance imaging was used to study changes in cere-
bral blood oxygenation in schizophrenic patients during a verbal fluency task. Method:  Five
right-handed male schizophrenic patients and five volunteers matched on demographic vari-
ables and verbal fluency performance participated in the study. Echoplanar images were
acquired over 5 minutes at 1.5 T while the subjects performed two tasks. The first involved
paced silent generation of words beginning with an aurally presented cue letter. This task
alternated with paced silent repetition of the aurally presented word “rest.” Generic brain
activation maps were constructed from individual images by sinusoidal regression and non-
parametric hypothesis testing. Between-group differences in the mean power of experimen-
tal response were identified on a voxelwise basis by an analysis of covariance that controlled
for between-group differences in stimulus-correlated motion. Results:  The comparison
group showed significant responses in the left prefrontal cortex, the insula bilaterally, the
midline supplementary motor area, and the medial parietal cortex. Compared to those sub-
jects, the schizophrenic subjects showed significantly reduced power of response in the left
dorsal prefrontal cortex, the inferior frontal gyrus, and the insula but significantly increased
power of response in the medial parietal cortex. In both groups frontal and parietal responses
were negatively correlated. Conclusions:  Schizophrenic patients displayed attenuated
power of response in several frontal regions during word generation but greater power of
response in the medial parietal cortex during word repetition.
 (Am J Psychiatry 1998; 155:1056–1063)

V erbal fluency involves the generation of words
from letter cues. Deficits in verbal fluency per-

formance are associated with frontal lobe lesions (1–3),
although functional imaging studies suggest that the
task engages a distributed network of cortical areas (4–
6). The task can be presented in a variety of forms—
auditory or visual, paced or unpaced, overt or covert,
and with random or constrained output. Task perform-

ance depends on multiple cognitive processes, including
sensory processing of the cue, retrieval of words from
memory, the selection of a word appropriate for the
cue, and covert or overt articulation of the word.

Despite variability in study design, the results from
verbal fluency experiments carried out with use of posi-
tron emission tomography (PET) have been reasonably
consistent (4–6). In normal subjects, cued generation of
words compared to word repetition or rest has repeat-
edly been associated with changes in regional cerebral
blood flow (CBF) in the left prefrontal cortex and left
or bilateral superior temporal gyri (7). Some studies
have also found that the pattern of blood flow change
over time is negatively correlated between frontal and
temporal regions; i.e., regional CBF is increased fron-
tally during word generation but increased in the
temporal cortex during word repetition (6). However,
others have found positively correlated frontal and tem-
poral blood flow changes, with both regions showing
increased regional CBF during word generation (7).
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These differences in frontotemporal correlation or
“functional connectivity” may reflect differences be-
tween studies in the details of experimental design; in
particular, negative correlations between frontal and
temporal regional CBF changes have been most consis-
tently observed under conditions of overt vocalization.

PET has also been used to investigate CBF changes
during verbal fluency tasks in patients with schizo-
phrenia. A series of studies in acutely ill, drug-free (8),
and chronically ill patients with distinct symptom pro-
files (9) has suggested that schizophrenic patients dem-
onstrate abnormally correlated regional CBF changes
in frontal and temporal regions in comparison with
control subjects. Specifically, when scanned under
identical conditions, schizophrenic subjects have dem-
onstrated small, positive frontotemporal correlations
in regional CBF, compared to relatively large, negative
correlations in control subjects. These findings have
contributed to the notion that frontotemporal dyscon-
nectivity (or “sejunction,” to use Wernicke’s term [10])
may be a central pathophysiological feature of schizo-
phrenia (11, 12).

It is interesting that these studies have not found dif-
ferences between control subjects and schizophrenic
subjects in the magnitude of frontal blood flow change
during verbal fluency tasks. This is in contrast to long-
standing observations of attenuated frontal (hypofron-
tal) blood flow response in patients with schizophrenia
when they are performing other tasks, such as the Wis-
consin Card Sorting Test, that reliably induce large re-
gional CBF changes in the dorsolateral prefrontal re-
gions of control subjects (13). Although these two
forms of abnormality (frontotemporal dysconnectivity
and hypofrontality) have previously been reported
separately, they need not be mutually exclusive. Indeed,
if experimental variance in the frontal cortex is nor-
mally determined in large part by an effective or causal
connection from the temporal cortex (14), then it is
easy to see that hypofrontality and frontotemporal dy-
sconnectivity might coexist.

The development of echoplanar (functional) mag-
netic resonance imaging (MRI) provides a relatively
new method for studying the neural correlates of verbal
fluency. Increased activity in a brain region induces a
local increase in blood flow that exceeds the metabolic
demand for oxygen, increasing the ratio of oxyhemo-
globin to deoxyhemoglobin and thereby increasing the
apparent transverse relaxation time (T2*)-weighted
magnetic resonance signal. This biophysical phenome-
non (blood-oxygen-level-dependent contrast [15]) pro-
vides an indirect measure of neural activation that can
be used to investigate cognitive processing. Although
functional MRI has the advantages that it does not en-
tail exposure to radioactivity and provides a theoreti-
cally greater spatial and temporal resolution than is
possible with use of PET, it does have the limitation of
being exquisitely sensitive to subjects’ motion, both
biological motion (e.g., cardiorespiratory pulsation)
and head movement in response to task demands.

To our knowledge, there has only been one previous

functional MRI study of paced verbal fluency in schizo-
phrenia (16). That study used a region of interest analy-
sis to demonstrate decreased magnitude of left prefron-
tal blood flow and increased magnitude of left temporal
cortical blood flow in a schizophrenic group. In com-
mon with that study, our experimental design was cho-
sen to resemble that of previous PET studies (17), ex-
cept that it involved a covert rather than an overt
articulatory response. A covert design was selected be-
cause overt speech is often associated with relatively
large head movements that could confound functional
MRI time series analysis. In addition, covert or subvo-
cal designs may have particular relevance to schizo-
phrenia, since some psychotic phenomena, such as
auditory hallucinations, may be derived from the pa-
tient’s own inner (as opposed to overt) speech (18). Be-
cause previous studies have suggested that the presence
of thought disorder and negative symptoms (particu-
larly alogia) may influence verbal fluency performance
of persons with schizophrenia (19), we chose to recruit
relatively high-functioning schizophrenic patients in
clinical remission who had few symptoms at the time of
scanning.

On the basis of the existing literature, we sought to
test two hypotheses: 1) that patients with schizophrenia
would demonstrate abnormally correlated (connected)
responses between frontal and temporal regions and 2)
that patients with schizophrenia would demonstrate re-
duced magnitude of prefrontal activation during word
generation.

METHOD

Five male patients with schizophrenia (DSM-IV criteria) and five
male volunteers were recruited from the patients and staff at the
Maudsley and Bethlem Royal Hospitals, London. All subjects were
right-handed according to the Annett scale (20). The mean age of
the comparison subjects was 31.6 years (SD=3.4), and that of the
schizophrenic subjects was 29.6 years (SD=9.1). There was no sig-
nificant difference between the groups in terms of age (t=0.4, df=8,
p=0.70).

On the day of scanning, before the scan, each subject was assessed
by the same rater (V.A.C.) using a standardized diagnostic interview
schedule (Schedule for Affective Disorders and Schizophrenia—Life-
time Version [21]) and measures of psychopathology (Scale for the
Assessment of Positive Symptoms [SAPS] [22] and Scale for the As-
sessment of Negative Symptoms [SANS] [23]) and verbal IQ (com-
bined score on the National Adult Reading Test/Schonnell [24]). The
patients had been unwell for a mean of 10.8 years (SD=3.6), during
which time they had all been hospitalized on at least one occasion and
had experienced positive symptoms. At the time of the study, the pa-
tients had low scores on standard symptom measures (SAPS mean
score=20.8, SD=7.8; SANS mean score=23.2, SD=11.3) and were re-
ceiving stable doses of atypical antipsychotic medication. The mean
IQ of the comparison subjects was 120.0 (SD=3.4), and that of the
schizophrenic subjects was 116.8 (SD=6.8), a nonsignificant differ-
ence (t=1.4, df=8, p=0.20).

At the same assessment, all subjects performed the FAS test (25) of
verbal fluency (three 30-second epochs of unpaced word generation
in response to a cue letter). There was no significant difference be-
tween the two groups in their ability to generate words: comparison
group mean=38 words (SD=7); schizophrenic group mean=40 words
(SD=8) (t=0.4, df=8, p=0.70).

Since training affects the neural correlates of cognitive tasks (26,
27), the experimental procedure was explained in a standardized
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way. A written instruction sheet was provided on the day of scanning,
and the same instructions were repeated verbally three times (during
the assessment, before the subject went into the scanner, and just be-
fore the task began). All subjects clearly understood the task require-
ments. Permission was obtained from the ethics committee of the
Bethlem and Maudsley National Health Service Trust. After complete
description of the study to the subjects, written informed consent was
obtained.

We used a periodic design involving presentation of a baseline con-
dition for 30 seconds followed by an activation condition for 30 sec-
onds. This cycle was repeated five times over the course of 5 minutes.
During the activation condition, subjects were cued by auditory pre-
sentation of a letter (e.g., “F”) every 3 seconds to generate a word
beginning with that letter and to internally (subvocally) articulate the
word. During the baseline condition, subjects were cued by auditory
presentation of the word “rest” every 3 seconds to internally articu-
late that word. At the end of the acquisition period, subjects were
questioned about their ability to perform the task. All members of
both groups reported that they were able to perform the task in the
scanner without difficulty.

Image Acquisition and Motion Estimation and Correction

Functional MRI data were acquired at the Maudsley Hospital,
London, on a GE Signa 1.5-T system (General Electric, Milwaukee)
with an ANMR operating console (Advanced Nuclear Magnetic
Resonance, Woburn, Mass.) for gradient echo echoplanar imaging.
One hundred T2*-weighted images depicting blood-oxygen-level-de-
pendent contrast (15) were acquired at each of 14 noncontiguous
near axial planes (7 mm thick with 0.7-mm slice skip; in-plane reso-
lution=3 mm) parallel to the anterior commissure-posterior commis-
sure (AC-PC) line (TE=40 msec, TR=3 seconds, number of signal av-
erages=1). To facilitate later registration of individual functional MRI
data sets in standard space, a T1-weighted echo echoplanar imaging
data set was acquired during the same session at 43 contiguous near
axial planes (3 mm thick with 0.3-mm slice skip; in-plane resolu-
tion=1.5 mm) parallel to the AC-PC line (TE=80 msec, TI=180 msec,
TR=16 seconds, number of signal averages=8). The AC-PC line was
anatomically identified on scout images in the sagittal plane before
echo echoplanar imaging data acquisition.

Rigid body motion in three spatial
dimensions during functional MRI
data acquisition was estimated by a
multidimensional search with use of
the Fletcher-Davidon-Powell algo-
rithm, and images were realigned by
tricubic spline interpolation (28–30).
The time series at each voxel of the re-
aligned images was then regressed on
the time series of concomitant and
lagged positional displacements in
three dimensions (31). We did not need
to discard any data because of evident
motion artifact in the residuals of this
regression. However, this second stage
of movement correction will attenuate
the periodic power in a functional MRI
time series if the subject’s head moves
periodically at the frequency of base-
line condition-activation condition al-
ternation during data acquisition. In
other words, correction of stimulus-
correlated motion entails a risk of re-
duced power to detect activation.

Image Analysis

Periodic change in signal intensity at
the angular frequency of the periodic
baseline condition-activation condi-
tion input function (2π/60 radians per

second in these data) was estimated by pseudogeneralized least
squares fit of a sinusoidal regression model to the movement-cor-
rected time series observed at each voxel. Pseudogeneralized least
squares fitting involved modeling the residuals of an ordinary least
squares fit of the sinusoidal regression model by a first-order autore-
gressive process (32, 33), transforming the terms of the regression
model by the estimated first-order autoregressive coefficient, and re-
fitting the transformed model by ordinary least squares. The model
included sine and cosine waves at the fundamental baseline condi-
tion-activation condition frequency of the experimental input func-
tion, parameterized by coefficients γ and δ. The power of periodic
response to the input function was estimated by (γ2+δ2), and this fun-
damental power divided by its standard error yielded a standardized
test statistic, the fundamental power quotient (FPQ), at each voxel
(34). Parametric maps representing FPQ observed at each intracere-
bral voxel were constructed. In order to sample the distribution of
FPQ under the null hypothesis that observed values of FPQ were not
determined by the experimental design (with few theoretical assump-
tions), the 99 images observed in each anatomical plane were ran-
domly permuted, and FPQ was estimated exactly as above in each
permuted time series. This process was repeated 10 times, resulting in
10 randomization parametric maps of FPQ at each plane for each
subject. (See reference 35 for a general introduction to randomization
tests, and references 36 and 37 for applications to PET data analysis.)

Observed and randomization FPQ maps were transformed into the
standard space of Talairach and Tournoux (38) and smoothed by a
two-dimensional Gaussian filter (full width at half maximum=7 mm).
The median observed FPQ at each intracerebral voxel in standard
space was then tested against a critical value of the randomization
distribution for median FPQ ascertained from the randomization
FPQ maps. For a one-tailed test of size α, the critical value is the
100*(1–α)th percentile value of the randomization distribution.
Voxels for which the observed median FPQ exceeded this critical
value were considered to be activated with a voxelwise probability of
type I error equal to α.

The sign γ indicates the timing of signal increase relative to the
input function (37). If γ is greater than 0, then the modeled response
to the experimental function will be relatively increased during the
first (baseline) condition; whereas if γ is less than 0, the modeled re-
sponse will be relatively increased during the second (activation) con-
dition. In the context of this experiment, therefore, negative values of

TABLE 1. Main Regional Foci of Brain Activation, With Periodic Signal Maximum During
Word Generation, in Five Comparison Subjects and Five Schizophrenic Subjects in Re-
sponse to a Verbal Fluency Task During Functional MRI Scanning

Number

Talairach
Coordinatea

Maximum
Fundamental 

Power

Probability
of Maximum

Fundamental 
Power

Cerebral Region of Voxels x y z Quotient Quotient (α)

Comparison subjects
Rostral supplementary motor area 124 3 11 53 4.4 0.000004
Left inferior frontal gyrus  66 –46 8 37 3.3 0.000004
Left insula  40 –43 11 4 2.5 0.000004
Medial parietal lobe  19 –6 –50 31 2.9 0.000004
Left middle frontal gyrus  17 –32 11 31 2.8 0.000004
Left middle frontal gyrus  14 –38 31 20 2.6 0.000004
Right insula  14 43 17 4 2.4 0.000004
Left inferior frontal gyrus  13 –40 8 26 2.3 0.000004
Left premotor cortex  13 –35 –3 53 2.2 0.000017

Schizophrenic subjects
Supplementary motor area  13 –3 –3 53 2.6 0.000005
Anterior cingulate gyrus  13 0 11 42 2.1 0.000027
Right fusiform gyrus  10 29 –64 –7 2.3 0.000005
Left precentral gyrus   9 –43 –6 48 2.2 0.000009
Right lingual gyrus   8 12 –64 –2 2.1 0.000014
Left middle frontal gyrus   7 –40 22 26 2.0 0.000045
Left inferior frontal gyrus   5 –52 6 31 2.5 0.000005
Left anterior insula   5 –32 22 9 2.5 0.000005

aTalairach and Tournoux atlas (38).
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median γ indicated generically increased
signal intensity during word generation,
and positive values of median γ indicated
generically increased signal intensity dur-
ing word repetition.

Activated voxels with signal maximum
during word generation were colored red;
activated voxels with signal maximum
during word repetition were colored yel-
low. Activated voxels were displayed
against the gray scale background of the
template image used for spatial normaliza-
tion to form a generic brain activation
map (30).

To estimate the difference between the
comparison and schizophrenic groups in
mean FPQ, we fitted the following analysis
of covariance (ANCOVA) model at each
intracerebral voxel in standard space:

FPQi,j=β0+β1Gj+β2∆FPQi,j+ei,j,

where FPQi,j is the observed FPQ at the ith
voxel in the jth subject, G is a factor cod-
ing group membership for each subject
(Gj=1 for comparison subjects and Gj=–1
for schizophrenic subjects), and ei,j is an
error term. The covariate ∆FPQi,j is the
difference in FPQ estimated at each voxel
before and after movement-correcting
regression (see above). In other words,
∆FPQi,j will be large and negative at a
voxel where correction for stimulus-corre-
lated motion has substantially attenuated
the standardized power at the frequency of
the input function. The purpose of includ-
ing this covariate in the model is to control
for between-group differences in the ex-
tent of stimulus-correlated motion when
one is estimating between-group differ-
ences in mean FPQ. The null hypothesis of
no between-group difference in mean FPQ
was tested by comparing the coefficient β1
to critical values of its nonparametrically
ascertained null distribution. To do this,
the elements of G were randomly per-
muted 10 times at each voxel, β1 was esti-
mated at each voxel after each permuta-
tion, and these estimates were pooled over
all intracerebral voxels in standard space
to sample the randomization distribu-
tion of β1. Critical values for a two-tailed
test of size α were the 100*(α/2)th and
100*(1–α/2)th percentile values of this dis-
tribution (39, 40)

RESULTS

Generic Brain Activation Mapping

For the comparison group, median FPQ was tested
against the null hypothesis at 22,927 voxels, with the
probability of type I error for each test at α=0.0002.
For a test of this size, we expect no more than five false
positive voxels over the search volume under the null
hypothesis. In total, 1,034 voxels were activated. For
the schizophrenic group, median FPQ was tested
against the null hypothesis at 21,976 voxels, with the
probability of type I error for each test also at α=0.0002.

For a test of this size, we expect no more than five false
positive voxels over the search volume under the null
hypothesis. In total, 253 voxels were activated.

Both groups demonstrated significant power of peri-
odic response, with maximum signal intensity during
word generation in the supplementary motor area, the
left inferior frontal gyrus, the middle frontal gyrus, and
the left insula. The comparison group also showed re-
sponses in the right insula and left premotor cortex,
while the schizophrenic group showed additional re-
sponses in the left precentral gyrus and right fusiform
and lingual gyri (table 1 and figure 1, row A).

Both groups demonstrated significant power of peri-
odic response with maximum signal intensity during
word repetition in the medial parietal cortex and ros-

FIGURE 1. Generic Brain Activation Maps for Functional MRI Data of a Comparison
Group and a Schizophrenic Group and a Map of Significant Between-Group Differences
in Power of Periodic Response During a Verbal Fluency Task a

aTalairach z coordinates (38) are shown at the top of each column. The left side of each map
represents the right side of the brain.
 (A) Generic brain activation map for comparison subjects. Red voxels are activated with
maximum signal during word generation, and yellow voxels are activated with maximum signal
during word repetition. Voxelwise probability of type I error=0.0002.
 (B) Generic brain activation map for schizophrenic subjects. Red voxels are activated with
maximum signal during word generation, and yellow voxels are activated with maximum signal
during word repetition. Voxelwise probability of type I error=0.0002.
 (C) ANCOVA map showing areas of significant between-group differences. Yellow voxels
have greater power of response in comparison subjects; red voxels have greater power of
response in schizophrenic subjects. Voxelwise probability of type I error=0.01.
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tral portions of the anterior cingulate gyrus. The com-
parison group showed additional responses in the cau-
dal supplementary motor area (table 2 and figure 1,
row B).

Between-Group Differences in Power of Periodic Response

A qualitative comparison of the power of response in
the two groups would suggest that the comparison group
demonstrated more extensive activations, especially in
the frontal cortex, than the schizophrenic group. How-
ever, this does not allow us to measure voxelwise differ-
ences in power of response between groups. A more for-
mal test of the null hypothesis of no between-group
difference in mean FPQ was provided by an ANCOVA
at each voxel (see equation), which controlled for the
possible confounding effect of a between-group differ-
ence in stimulus-correlated motion. This null hypothesis
was tested at the 1,082 voxels that were significantly ac-
tivated in one or both of the generic brain activation
maps, with probability of type I error for each test at
α=0.01. For a test of this size, we expect no more than 11

false positive voxels over the
search volume under the null
hypothesis. In total, 147 voxels
demonstrated a significant dif-
ference in mean FPQ. Most of
these were located in frontal re-
gions (left middle and inferior
frontal gyri, left insula, and right
inferior frontal gyrus) and dem-
onstrated significantly greater
power of response in the com-
parison subjects than in the
schizophrenic subjects (table 3
and figure 1, row C). These re-
gions were characterized by
maximum signal intensity dur-
ing word generation in both
groups. Another cluster of voxels,
located in the medial posterior
parietal cortex, demonstrated sig-
nificantly greater power of re-
sponse in the schizophrenic sub-
jects than in the comparison
subjects and was characterized
by maximum signal intensity
during word repetition in both
groups. The schizophrenic group
therefore showed an alteration
of the power of regional re-
sponse (relative “hypofrontal-
ity” and “hyperparietality”) with-
out showing the differences in
phase of response that would
suggest differences in functional
connectivity between frontal
and parietal cortexes (figure 2).

DISCUSSION

This study examined the functional neuroanatomy of
verbal fluency in a group of patients with long-standing
and stable schizophrenia who were compared with a
group matched for age, handedness, IQ, and ability to
perform the FAS test of verbal fluency. To the best of
our knowledge, this is the first functional MRI study of
verbal fluency in schizophrenia to explore the temporal
characteristics of cortical responses to a periodic design
and to use linear modeling techniques to assess be-
tween-group differences at the single-voxel level.

Although there are many methodological differences
(in task presentation, image acquisition, and data
analysis) between PET and functional MRI (41), this
study was designed to closely resemble previous PET
work. An overt articulation design, as used in PET,
would have allowed for on-line monitoring, but the
likely consequent increase in movement during articu-
lation would have increased the risk of a confounding
effect on functional MRI time series analysis, particu-
larly since psychiatric patients may not always move in

TABLE 2. Main Regional Foci of Brain Activation, With Periodic Signal Maximum During
Word Repetition, in Five Comparison Subjects and Five Schizophrenic Subjects in Re-
sponse to a Verbal Fluency Task During Functional MRI Scanning

Number

Talairach
Coordinatea

Maximum
Fundamental 

Power

Probability
of Maximum

Fundamental 
Power

Cerebral Region of Voxels x y z Quotient Quotient (α)

Comparison subjects
Medial parietal cortex 153 3 –61 42 3.7 0.000004
Rostral anterior cingulate gyrus  67 6 44 –2 2.9 0.000004
Posterior cingulate gyrus  59 3 –47 37 2.8 0.000004
Medial parietal cortex  24 3 –50 59 2.6 0.000004
Medial parietal cortex  19 –6 –50 31 2.9 0.000004
Rostral supplementary motor area  16 3 –11 59 2.4 0.000004
Medial parietal cortex  11 –3 –67 15 2.3 0.000004

Schizophrenic subjects
Posterior cingulate gyrus  86 –3 –50 42 2.8 0.000005
Medial parietal cortex   8 3 –64 53 2.1 0.000014
Rostral anterior cingulate gyrus   7 9 42 –7 2.7 0.000005

aTalairach and Tournoux atlas (38).

TABLE 3. Cerebral Regions Showing Significantly Different Power of Response to a Verbal
Fluency Task Between Five Comparison Subjects and Five Schizophrenic Subjects During
Functional MRI Scanning

Number

Talairach
Coordinatea

Maximum
Difference in
Fundamental 

Power

Probability
of Maximum
Difference in
Fundamental 

Power
Cerebral Region of Voxels x y z Quotient Quotient (α)

Left inferior frontal gyrus/insula 25 –38 11 –2 0.9 0.0006
Medial parietal cortexb  8 9 –50 37 0.6 0.007 
Left middle frontal gyrus  7 –46 11 42 0.5 0.004 
Medial parietal cortex 11 6 –61 48 0.6 0.002 
Right inferior frontal gyrus  5 49 14 9 0.5 0.004 

aTalairach and Tournoux atlas (38).
bFor this region, the values for the schizophrenic group were greater than those for the comparison
group.
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the same way or to the same extent as
comparison subjects. In particular, there
may be systematic differences between
patient and comparison groups in move-
ments that coincide with the experimen-
tal stimulus, such as (overtly or covertly)
vocalizing a response. We were able to
reduce the impact of such stimulus-corre-
lated motion—which would otherwise
have exaggerated the between-group dif-
ference in frontal response—by use of
ANCOVA (40).

The results enabled us to address our
two original hypotheses. We are unable
to confirm or refute previous PET find-
ings of exaggerated temporal lobe activa-
tion in schizophrenia, since our subjects
showed little evidence of either temporal
lobe activations or altered phase of re-
sponse. The left temporal lobe is known
to be activated by tasks that entail analy-
sis of external speech (42–44), as well as
during verbal self-monitoring and audi-
tory verbal imagery (45), and so may be
involved in the internal perception of
speech. However, neuronal activity in the
temporal cortex is reduced in both hu-
mans and primates when the subjects
vocalize (17, 27). This suppression of
temporal activity during overt speech is
thought to be effected by inputs from the frontal areas
that generate speech and so may serve to inform regions
concerned with speech perception that the acoustic sig-
nals are of self-origin (46). A possible explanation for
the lack of this temporal suppression in our experiment
is the requirement for a covert articulatory response, so
that subjects are not required to process the sound of
their own overt speech.

We did find evidence of an attenuated frontal re-
sponse in the schizophrenic group, although unlike pre-
vious studies using the Wisconsin Card Sorting Test
(12), this was not limited to the dorsolateral portion of
the prefrontal cortex. Debate about the role of frontal
lobe blood flow dates back to the first functional neuro-
imaging study of patients with schizophrenia (47).
Since then a large number of studies have investigated
this finding with the use of differing experimental con-
ditions and methods and have broadly found that hy-
pofrontality is most consistently seen in response to
“executive” tasks, which patients tend to perform
poorly (for a review, see reference 48). Frith (49) has
suggested that such hypofrontality may be explained by
this poor performance alone, but nonpsychotic elderly
volunteers, who also show impaired performance on
the Wisconsin Card Sorting Test, have been shown to
have frontal regional CBF changes of the same magni-
tude as control subjects (50). In the present study, since
there was no on-line monitoring of task performance,
we cannot directly exclude the possibility that between-
group differences in response were affected by differ-

ences in task performance. However, subjects’ ability to
perform the task before scanning did not differ signifi-
cantly between groups, nor did comparison subjects
and schizophrenic subjects report the use of different
strategies to execute the task.

Another potential confounding factor is that all pa-
tients (and no comparison subjects) were taking anti-
psychotic medication, which could be responsible for a
global attenuation of CBF. However, the atypical anti-
psychotics (which our patients were receiving) appear
to have a minimal effect on frontal blood flow (51), and
there was an exaggerated medial parietal response dur-
ing the word repetition task in the patient group.

The schizophrenic patients and the comparison sub-
jects displayed similar reciprocal phase relationships be-
tween activity in the prefrontal and medial parietal cor-
texes. These regions are anatomically interconnected (52,
53), and the medial parietal cortex has been implicated
in visuospatial processing, memory-related imagery, and
attention (54–56). Animal studies of working memory
have implicated a cortical circuit involving the dorsolat-
eral prefrontal cortex and parietal, temporal, and tha-
lamic regions in working memory, and it is possible that
disruption of this circuit could give rise to the executive
function failures that are seen in schizophrenia (57, 58).
Tasks involving the generation of inner speech have been
associated with medial parietal “deactivation” (59, 60),
implying a reduction of neural activity in regions special-
ized for functions that are of little relevance to linguistic
task performance.

FIGURE 2. Regional Mean Fitted Time Series for Voxels in the Left Inferior Fron-
tal Gyrus and Medial Posterior Parietal Cortex in Response of Comparison Sub-
jects and Schizophrenic Subjects During a Verbal Fluency Task a

aSolid lines represent the comparison group’s response, dotted lines represent the
schizophrenic group’s response, and dashed lines represent the periodic baseline
condition-activation condition input function.
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In summary, while this study did not demonstrate
evidence of altered frontotemporal relationships in
schizophrenia, it provided new evidence of attenuated
frontal activation during performance of a verbal flu-
ency task.
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