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Decline of Dopamine:
Effects of Age and Acute Neuroleptic Challenge

I t has been almost 30 years since the methods of nuclear medicine were first applied
to the study of psychiatric disorders (1). Early studies examined regional cerebral

blood flow and, subsequently, glucose metabolism as measures of neuronal activity
(2–5). Soon thereafter, ligands that directly measure the neurobiologic substrates of
neurotransmitter function were developed and were used widely in psychiatric neuro-
imaging (6, 7). The capacity to study neurometabolic and neurochemical activity in
vivo relatively noninvasively in patients—and at different stages of their illness and
lives—promised to revolutionize psychiatric research and reveal the nature of brain
function and disease pathophysiology.

Positron emission tomography (PET) scanning is regarded as the Rolls Royce of
neuroimaging. Interest in functional neuroimaging with PET has burgeoned over the
years as the relevant technology and methodology with which it is used have become
more sophisticated. The reports of Volkow et al. and Bartlett et al. in this issue may
be considered in this context.

The study by Volkow and colleagues, in its simple elegance, demonstrates how
the power of PET, when applied to a basic question, can yield a potentially pro-
found result. Using PET and the competitive dopamine receptor antagonist [11C]-
raclopride as the ligand for quantitative neuroreceptor (D2) imaging, these inves-
tigators found decreases in D2 receptor densities that correlated with increasing
age in a group of healthy volunteers. While this finding has been previously re-
ported (8, 9), Volkow et al. also used standard neuropsychological tests. Remark-
ably, they found a strong correlation between D2 receptor density and selective
measures of motor and cognitive function, a correlation that could not be ex-
plained on the basis of age effects. These included motor function measured by the
Finger Tapping Test, abstract thinking and mental flexibility measured by the Wis-
consin Card Sorting Test, and attention and response inhibition measured by the
Stroop Color-Word Test interference score.

At first glance, it might appear that there is nothing new or noteworthy in these
findings. However, this linear association between the measures of neuropsycho-
logical function and D2 receptors is in fact striking, because it was demonstrated
in healthy volunteers, not symptomatic patients with neurologic disorders. These
results run counter to the dogma derived largely from the literature on Parkinson’s
disease, in which it has been suggested that an 80% or greater loss of nigrostriatal
dopamine function had to occur before clinical manifestations of functional im-
pairment would be evident (10). It has been generally assumed that with lesser
deficits, the redundancy in striatal dopamine innervation, and/or various compen-
satory mechanisms, would obviate the appearance of clinical signs or symptoms.
Thus, the report by Volkow et al. of a linear association between decline in aspects
of neuropsychological function and decrements in D2 receptors in healthy volun-
teers is noteworthy. Their data indicate that the resolution of PET-quantified D2
binding is sensitive enough to detect functional decrements that are subclinical and
asymptomatic and also is sufficient to detect the actual linear relationship between
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dopamine neurotransmission (as reflected by D2 density) and specific motor and
cognitive functions as well as age.

Historically, the focus of studies of dopamine and behavior has been on the D2
receptor, yet recent work has emphasized the role of D1 receptors in mediating the
deficits of aging and disease (11, 12). Work by Goldman-Rakic and co-workers (e.g.,
reference 13) has demonstrated the role of D1 receptors in frontal lobe cognitive
functions involving working memory. In addition, it has been clearly demonstrated
that D1 agonists can reverse the deficits in motor and neurocognitive function asso-
ciated with Parkinson’s disease and MPTP-induced damage (14–17). Such data not
only highlight the important role for D1 receptors in normal function and non-
pathologic aging, but raise interesting questions about possible changes in D1 recep-
tors that might be revealed in the Volkow et al. paradigm.

The findings of the study by Volkow et al. also illustrate the functional conse-
quences of brain dopamine activity. The Finger Tapping Test is the only measure for
which the anatomic basis is predominantly attributable to the corpus striatum of the
basal ganglia. The card sorting and Stroop tests are believed to be subserved by
cognitive functions that are primarily based in the cerebral cortex. This has two
important implications. First, it reaffirms the often reported but less frequently ac-
knowledged fact that the corpus striatum, by virtue of its topographically organized
and distributed projections, modulates a wide range of cognitive and motor functions
(18). Second, these results demonstrate the distributed anatomic network in which
dopamine plays an important functional role (19, 20).

The report of the late Elsa Bartlett and her colleagues is less easy to interpret. Its
results are somewhat counterintuitive and not wholly consistent with previously re-
ported studies, though nonetheless interesting. The New York University-Brook-
haven PET group had previously shown, as had others, that chronic treatment with
antipsychotic drugs decreased glucose metabolic activity in extrastriatal (predomi-
nantly cerebral cortical) regions while increasing it in the striatum (21–26). More-
over, it had also been shown that neither D2 receptor densities nor affinities differed
between patients who were responsive and those who were not responsive to anti-
psychotic drug treatment (27–29), although densities did correlate with plasma drug
levels (27, 30). Since the onset of D2 receptor blockade is rapid (within hours of drug
administration) yet therapeutic effects take weeks to occur, Bartlett et al. (21) hy-
pothesized that the critical mechanisms mediating antipsychotic drug effects must be
downstream from the receptor and might be reflected by neurometabolic activity.
They tested this by measuring glucose metabolic activity not as basal levels under
resting conditions or after repeated antipsychotic drug treatment but with a dynamic
test 12 hours after parenteral administration of haloperidol (5 mg i.m.). They found
that following drug challenge glucose metabolic activity was decreased in all brain
regions including the striatum. Moreover, the decrements were greatest in the healthy
volunteers and patients classified as treatment nonresponders. It is interesting that
the responders to treatment showed only minimal change.

These results are puzzling for two reasons. First, the effects of haloperidol on glu-
cose metabolic activity were widespread (essentially in all brain regions measured)
and greatly exceeded the known distribution of D2 receptors. Presumably, this re-
flects the transduction of D2-mediated effects across the distributed striatal-thalamic-
cortical circuits through which striatal neurons project (18). Second, the direction of
the changes in glucose metabolic activity is unusual—haloperidol produced de-
creased activity, including in the striatum, except in treatment-responsive schizo-
phrenic patients. How are we to understand this? Some prior studies indicate that
repeated antipsychotic drug treatment increases striatal metabolic activity and de-
creases cerebral cortical metabolic activity, while others have found increases in cere-
bral perfusion with drug treatment (22–25, 31). It is notable that brain metabolic
studies using 2-deoxyglucose in rodents have shown that acute antipsychotic drug
administration generally depresses metabolic activity (32, 33). Although it is possible
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that acute single-dose administration produces a different pattern of effects on brain
glucose utilization than repeated dosing (34), these disparate findings are not readily
reconcilable.

The fact that the greatest changes were seen in the nonresponding patients and
normal subjects is also puzzling. Buchsbaum et al. (22, 23) previously reported that
low basal levels and greater increases in glucose metabolic activity after repeated
antipsychotic drug treatment were associated with better response. Critical data
missing from the Bartlett et al. study are the baseline levels of the healthy subjects.
Without these values, it is difficult to conclude whether the greater decreases in
glucose activity that occurred in the nonresponders were to levels commensurate
with those of the normal subjects (i.e., the treatment normalized their aberrant
levels). Wolkin et al. (35) reported blunted prefrontal decreases and relative striatal
increases in glucose metabolism in response to chronic haloperidol administration
in patients with prominent negative symptoms. Poor response to antipsychotic
treatment is characteristic of this subgroup of patients (36–38). The Brookhaven
group also previously reported that amphetamine challenge decreased cerebral cor-
tical glucose metabolism but that this effect was also blunted in the patients with
negative symptoms (39). These results from the same group suggest that the small-
est change would be in the patients who were not responsive to treatment—that
the treatment-responsive patients would exhibit the greater plasticity and capacity
for antipsychotic response (40).

In general, selective or nonselective dopamine agonists produce decreases in cor-
tical glucose metabolism (33, 41–43), although Volkow et al. (44) subsequently
found, using methylphenidate, that brain metabolic changes varied by region, pos-
sibly because of differences in D2 receptor availability and/or function. Preclinical
studies have shown that this effect is reversed in animals with pharmacological or
surgical lesions of the striatum or prefrontal cortex (45). A recent study by Wein-
berger’s group (manuscript by R. Saunders et al. submitted for publication) may
help to bring these apparently inconsistent findings into a cogent context. They
examined the dopamine response in the caudate nuclei, following pharmacological
stimulation with amphetamine of the dorsolateral prefrontal cortex, in adult
rhesus monkeys that had had either neonatal or adult lesions of the medial tempo-
ral lobe and in normal animals. The normal animals, as well as those with lesions
of the dorsolateral prefrontal cortex that were made when they were adults,
showed a reduction in dopamine overflow. In contrast, the monkeys with dorso-
lateral prefrontal cortex lesions made during neonatal periods became hyper-
dopaminergic (i.e., had decreased dopamine overflow). These data illustrate that
early injury to the primate medial temporal lobe predisposes an adult brain to
respond to prefrontal cortical stimulation with abnormal striatal dopamine re-
lease. Consequently, it could be that pathologies of different types or timing in the
course of development result in distinct patterns of neural organization in the
striatal-thalamic-cortical architecture that produce varying responses to dopa-
minergic stimulation.

There is a sense of satisfaction in having an article definitively settle a question in
such a way that further research would be only confirmational. However, these two
very interesting reports raise as many issues as they settle, and it is clear that further
research on these important questions is necessary.
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