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Synaptic plasticity is currently the target of much neurobiological research, because it is
thought to play an important role in brain function (particularly memory formation). How-
ever, it has attracted little attention from psychiatrists to date despite accumulating evidence
that links it to various clinical syndromes, including amnesia and possibly psychosis. The
purpose of this article is to present an overview of the two major arms of synaptic plasticity
research—theoretical (the field of neural network modeling) and neurobiological (long-term
potentiation). Artificial neural networks are a class of theoretical model that has been devel-
oped with the aim of understanding how information could, in principle, be represented by
large numbers of interconnected and relatively simple units. Over the past few decades, several
theoretical accounts of information-processing mechanisms have been developed, and these
are briefly reviewed. The principle common to representation formation in nearly all neural
networks is that of “associability”—the idea that streams of information are combined by
forming, strengthening, or pruning connections between them to form new representations
that can later be retrieved. Associability also lies at the heart of psychological theories of
information storage in the brain. Research into associability has directed the attention of many
experimenters toward the possible biological correlates of such mechanisms. Of particular
interest is the recent discovery that some neurons appear to possess connections of modifiable
strength. The implications of this finding for psychiatry are discussed in relation to repre-
sentational disorders such as delusions and amnesia.
 (Am J Psychiatry 1997; 154:156–164)

M any common symptoms encountered in psychi-
atric practice, such as delusions, perplexity or

delusional mood, phobias, and amnesia, appear to in-
volve abnormalities of the brain’s representation of the
outside world. Although explanations of these phenom-
ena undoubtedly include some underlying disturbance
of the basic machinery of perception, cognition, and
knowledge representation in the brain, constructive ef-
forts to formulate explanations in these terms have been
rare (1). The hypothesis that delusions and related phe-
nomena arise from some disturbance of the cognitive
machinery of belief, memory, and their associated neu-
ral representations provides a pointer to those areas of
inquiry that could shed light on their biological under-
pinnings. The theoretical and experimental study of
neural representation has mushroomed in recent years;
in this article we attempt to take account of those de-
velopments that may prove to be relevant to psychiatry.

Although psychiatry has tended to leave aside the
mechanistic details of representation formation in the
brain, these details have attracted attention from such
disparate fields as neuroscience, psychology, comput-
ing, and, perhaps surprisingly, physics and engineering.
These disciplines have in recent decades devoted much
attention to the question of what happens to informa-
tion once it has been transduced by the sensory recep-
tors and passed into the brain. There are several reasons
for this abundance of interest. The brain is an enor-
mously complex structure, and it has only been with the
comparatively recent development and evolution of
computers that it has been possible to muster the com-
putational power needed to simulate how large num-
bers of small neuron-like processing elements could
represent “knowledge.” In addition, research efforts
have been motivated by the inability (to date) of artifi-
cial intelligence to replicate convincingly some useful,
and apparently trivial, brain functions such as face rec-
ognition and speech synthesis—functions that our own
brains perform with ease. The failure of classical engi-
neering and computer approaches to solve these appar-
ently simple problems has forced scientists to look more
carefully at how real brains do this. One result has been
the development of so-called artificial neural networks,
which are constructed according to biologically in-
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spired principles, and whose properties are investigated
in the hope not only that they will provide solutions to
recalcitrant engineering and computing problems but
also that they will shed light on brain function.

The modern field of neural network research was
greatly influenced by the insight of the pioneering
neuroanatomist Cajal that information could be stored
by modifying the connections between communicating
nerve cells, in order to form associations (2). This idea
was formalized by Hebb (3), who suggested that such
modifications should take place between the connected
cells if (and only if) both neurons were simultaneously
active. Following the development of the earliest neural
networks, many of which were inspired by Hebb’s theo-
retical postulate, physiologists discovered that some
memory-associated structures possessed modifiable
synapses. It appeared that the brain therefore had at
least some of the properties needed to implement
Hebb’s information storage paradigm. Subsequently,
both neural network research and memory research
have proceeded in parallel to elucidate the theoretical
properties of ideal neural networks and the actual prop-
erties of information storage in the brain. It seems in-
creasingly likely that synaptic plasticity does indeed
play a critical role in representation formation, and it is
therefore probable that phenomena such as delusions
and amnesia, which are essentially disorders of repre-
sentation, will eventually be found to involve the
mechanisms of neural plasticity in one form or another.

First, we review the field of neural network research
and describe how artificial neural networks are con-
structed from large numbers of simple neuron-like ele-
ments, how they process and store information, and
how their brain-like properties arise. Second, we ex-
plore some of the recent discoveries concerning repre-
sentation in real brains, including the molecular biol-
ogy that endows synapses with their properties of
Hebbian modification. These discoveries are consid-
ered to be important because they constrain the types
of neural network models that can be said to possess
biological relevance and because they provide a poten-
tial target for therapeutic intervention. Intervention at
sites of synaptic plasticity is already promising to be
useful in many neurological conditions, and an under-
standing of the molecular biology of representation
formation may provide therapies that are also useful to
psychiatrists. Finally, we review recent evidence that a
disturbance of synaptic plasticity may underlie a well-
established psychiatric condition, postelectroconvul-
sive amnesia.

THEORETICAL ASPECTS OF SYNAPTIC PLASTICITY:
ARTIFICIAL NEURAL NETWORKS

The Hebb Rule

An artificial neural network is a model of how a
group of neuron-like elements might behave when con-
nected together in various ways and made to influence

each other according to certain rules. The aim is to
simulate brain-like behavior in a simplified manner that
is then amenable to analysis.

Early in this century Cajal proposed the “neuron doc-
trine” (2), part of which (the “principle of dynamic polari-
zation”) states that impulse conduction from one neuron
to another proceeds in one direction only. This property
of one-way transmission between neurons forms the
basis of nearly all artificial neural networks. Cajal also
proposed the novel idea that information could be
stored by modifying interneuronal connections. This
principle was formalized by Hebb, who proposed that
the connection from one neuron to another, rather than
being a fixed, passive conductor like a piece of wire,
could be increased in strength when both neurons were
simultaneously active, so that a neuron could subse-
quently be made to excite the next one more easily than
before (3). Specifically, he put forward his now well-
known Hebb rule: “When an axon of cell A is near enough
to excite a cell B and repeatedly and persistently takes
part in firing it, some growth process or metabolic change
takes place in one or both cells such that A’s efficacy,
as one of the cells firing B, is increased” (3, p. 62)

It may be seen that the Hebb rule allows for the asso-
ciation of neural events. If cell A is connected to cell B,
and they are both active simultaneously, and the con-
nection between them is therefore strengthened, then
the future occurrence of activity in cell A is more likely
to produce activity in cell B as well. For example, if cell
B is one of a group of cells whose activity is signaling
food, and cell A is part of the representation of the
sound of a bell ringing, then if the connection between
them is strengthened in obedience to the Hebb rule, the
next time the bell is rung, the food representation will
be more easily activated. If this connection is suffi-
ciently strong, the food representation may be evoked
by the sound of the bell even in the absence of food.
This, of course, is the familiar paradigm of Pavlov. This
simplified example illustrates how the Hebb rule im-
parts the property of association of activity to groups
of neurons. Thus, as well as one-way conduction of im-
pulses, a second property common to nearly all neural
networks is modifiability of the connections (also called
synaptic weights) between neurons (or units) according
to rules.

Properties of Neural Networks

Information storage and retrieval by the brain have
some curious properties. First, for some kinds of problems
they are very fast: for example, if a subject is shown a
photograph of a face and asked whether he or she has
ever seen that person before, a reply will probably be
forthcoming in less than a second. Currently, modern
computers are unable to match this performance using
processing elements many thousands of times faster than
the brain’s comparatively sluggish synapses. Second, even
serious brain damage usually appears not to remove spe-
cific distant memories. These two features exemplify the
differences between information stored by the brain and
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that stored by a computer and are called, respectively,
content-addressability and distributed representation.
Content-addressability means that retrieval of informa-
tion does not require an exhaustive search through the
memory store (which, in the example given, would require
many hours in order to check every face ever seen) but
that features of the item to be retrieved are used to activate
only those items in memory that possess the same features
(or a subset of them—for example, only young women
with long brown hair). Distributed representation refers
to the observation that a given memory is probably stored
across many brain regions. Evidence for this includes the
finding, first reported by Lashley (4), that experimental
removal of even large areas of the cerebral cortex does
not appear to result in the selective obliteration of memo-
ries, although patients with extensive brain damage may
report that memories in general become less clear. The
gradual (rather than abrupt) decline of the functioning of
a system with increasing injury is often referred to as
graceful degradation. In the brain, it is a byproduct of the
distributed nature of its information storage.

Artificial neural networks possessing the two proper-
ties of one-way impulse traffic and modifiable connec-
tions (according to the Hebb rule or variants of it) have
turned out to have some intriguingly brain-like proper-
ties, including content addressability, distributed repre-
sentation, and graceful degradation. This has made
them of great interest in the development of a theoreti-
cal understanding of brain function.

Early Artificial Neural Networks

The first attempt to produce “behavior” from artifi-
cial neuron-like elements linked together was made by
McCulloch and Pitts more than 50 years ago (5). At this
time the first computers, using the binary logic that is
still used today, were being developed, and McCulloch
(a neurophysiologist) and Pitts (a logician) were struck
by the way in which neurons themselves appeared to
behave in a binary fashion—active or silent. They sug-
gested that the on-or-off property of neurons could, as
in a computer, be used to perform logical operations.
The McCulloch-Pitts model (figure 1, part A) therefore
consisted of a group of neurons connected to a process-
ing neuron whose task was to add up the strength of all
of its inputs and determine whether the total was
enough to exceed its threshold for firing an action po-
tential. By using such a network, it is possible to per-
form a number of logical operations. Figure 1, part B,
illustrates how a McCulloch-Pitts neuron performs an
“AND” operation. In this type of computation, the de-
sired response of the output neuron is that it should fire
if both of its input neurons are active together, but not
if only one or the other is active alone. This response
can be achieved by setting the threshold of the output
neuron such that neither input is strong enough to acti-
vate the output neuron by itself. Simple neural network
models are based on the McCulloch-Pitts neuron, with
the added feature that their connections can change
strength, as Hebb suggested, so that a judicious combi-
nation of connection strengths and thresholds may al-
low an output neuron to fire correctly. Figure 1 illus-
trates how the AND operation can be represented with
the use of variable connection strengths.

There are two serious limitations to this type of model.
The first is that although it is possible for an outside ob-
server to see what connection strengths might enable a
given input to result in a desired output, the network can-
not learn these connections for itself—they have to be set
by hand, by someone who knows in advance the nature
of the problem to be solved. This kind of “hardwiring”
may satisfactorily explain those types of nervous system
connectivity that are designed to solve a constant prob-
lem, such as edge detection in the retina, but it does not
explain how a network might learn, for example, the
Pavlovian association paradigm. The second difficulty is
that with only an input and an output layer of neurons,
as in the McCulloch-Pitts model, there are some prob-
lems, such as the “exclusive OR,” that simply cannot be
solved by any straightforward combination of inputs and
connection strengths. The exclusive OR is analogous to
teaching Pavlov’s dog to expect food after either a bell or
a light but not after both a bell and a light. It requires that
a neuron learn to fire when either one of its two inputs is
active but not both of them. It can be seen in figure 2 that
this would require a self-contradictory wiring arrange-
ment. The technical term for this type of problem is linear
inseparability.

The task facing neural network researchers, then, is
how to build a neural network that is able to find for

FIGURE 1. The McCulloch-Pitts Modela

aA) Three input neurons connect to an output neuron through syn-
apses of fixed strength. The numbers outside parentheses indicate
neuronal activation or synaptic strength, and the number inside pa-
rentheses indicates the firing threshold of the output neuron. Firing
neurons are shaded. Activation of the output neuron is determined by
multiplying the activation of each active input by the strength of the
connection between them and then adding the totals. Provided its
activation equals or exceeds the threshold, the neuron will fire. B) Ad-
justment of the postsynaptic threshold allows a configuration of neu-
rons to perform an “AND” operation. Firing of only the top neuron
(left) or only the bottom neuron (middle) fails to activate the output
neuron past its firing threshold. However, firing of both input neu-
rons together (right) produces a postsynaptic activation strong
enough to induce the cell to fire.
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itself a suitable wiring arrangement to perform a de-
sired computation. Of course, in principle, finding such
a solution does not necessarily mean that the brain uses
the same mechanisms to process information. Neural
network researchers with an interest in biological plau-
sibility must therefore look to the results of neurophysi-
ological studies to guide the development of network
models. This is discussed further in the section on Bio-
logical Synaptic Plasticity.

Representation Formation by Error Correction

One of the first neural networks that could “learn”
was built by Rosenblatt (6) in 1962 and called the per-
ceptron. In order to build a network that can set its own
synaptic weights without the need for outside interven-
tion, it is necessary to build into it some kind of rule
about how and when to change connections. The per-
ceptron learning rule owes its origins to the Hebb rule
and is of a type known as error correction. In effect, the
output neuron is given feedback about whether it has
fired correctly or not. If it has fired when it should have
remained silent, then those inputs that have been active
at the time are treated as having told it to fire inappro-
priately, and their connections are therefore decreased
in strength. If the output neuron has remained silent
when it should have fired, then the connections coming
from the active inputs are strengthened. If this cycle of
input, output, and weight change is repeated enough
times, it can be shown that the connections will eventu-
ally arrange themselves into a suitable configuration for
solving the problem being presented, provided it is not
linearly inseparable (7).

Associative Memory

In 1969 Willshaw and colleagues (8) showed that a
neural network with many output units, instead of only
one, could function as an associative memory. In other
words, it could take repeated presentations of a pat-
tern of input activity and, using a Hebb-type rule, ad-
just its connections according to a desired pattern of
output activity so that, eventually, presentation of the
input pattern would produce the second pattern as the
output. The associative network has excited much specu-
lation that some brain regions might use a similar prin-
ciple to perform associations such as the Pavlovian ex-
ample we have given. However, the great difficulty with
the associative network is that it, too, is unable to solve
linearly inseparable problems.

The problem of linear inseparability has been tackled
by modifying network architecture—that is, the par-
ticular arrangement of neurons over which the learning
rule is operating. In the case of the exclusive OR, the
paradoxical wiring problem can be solved by introducing
another neuron, whose task is to resolve the conflict.

The layer of neurons that is interposed between the
input and output neurons, in order to untangle para-
doxes and convert a linearly inseparable problem into
a set of smaller linearly separable ones, is called a hid-

den layer. With enough neurons in a hidden layer, al-
most any problem can be solved. One difficulty lies in
knowing how many hidden-layer neurons is enough. A
more serious problem is how to train (i.e., find the right
configuration of connection strengths for) the hidden-
layer connections. The problem is that an error-correct-
ing rule will only operate when a neuron knows what
it is “supposed” to be doing—in other words, is receiv-
ing some form of feedback about whether or not it has
fired appropriately. A hidden-layer neuron, however,
does not know what it is supposed to be doing, because
its task is to do whatever is necessary to make the out-
put neuron fire correctly. If it knew a priori what to do,
then there would be no need to have it in the network.
An ingenious way around this problem is the technique
of back-propagation of errors, developed by Rumelhart
and associates (9). In this kind of network, the error (the
fact that the output neurons are firing incorrectly) is
passed back to the hidden layers, which also adjust their
weights according to an error-minimizing rule and then
pass the error back to the preceding layer, and so on.

Back-propagation is quite successful at solving cer-
tain kinds of problems and is now widely used in the
design of adaptive (learning) systems. However, it wor-
ries many biologists, who feel that there is no evidence
that this type of error propagation occurs in real brains.
Nevertheless, analysis of the results of back-propaga-
tion has revealed that when the network has settled
down to a stable state and no more changes are taking
place (that is, the connections to all of the neurons have
arranged themselves into a suitable configuration), it

FIGURE 2. The “Exclusive OR” Problema

aA) A simple neural network cannot solve the exclusive OR problem.
The output neuron can be induced to fire when either the top (left)
or bottom (middle) input neuron is active, provided the synaptic
strength equals or exceeds 1. However, if the conditions for firing to
either input alone are satisfied, then the conditions for not firing to
both of them cannot be met (right). n=an unspecified value. B) A
solution to the exclusive OR problem is the introduction of an in-
hibitory hidden unit. The hidden unit will only be activated by simul-
taneous firing of both of the inputs, and its action is to inhibit post-
synaptic excitation produced by the two input neurons.
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can be seen that the hidden-layer neurons have come to
form an internal representation of the problem, using
groupings of the data that were not present in the infor-
mation originally presented to the network (figure 3).

This type of “concept” formation is an emergent
property of the network and could not have necessarily
been predicted from observation of the input pattern.
Thus, although the brain probably uses somewhat dif-
ferent algorithms, analysis of artificial neural networks
has shown that it is in principle possible to produce
complex-looking behavior from very simple units act-
ing together in large numbers.

Representation by Stable States

Back-propagation and other kinds of error-correcting
algorithms have provided ways in which a neural net-
work might learn to associate patterns of activity, form-
ing internal representations of the problem by using
hidden units. In this type of learning, the output units
are being told what to do by an external agency. A real-
world example may be found in some neural network
models of the cerebellum, where it is postulated that
motor commands are processed with the use of feed-
back from muscles and nerves as a “teacher” to decide
whether the command has been executed correctly (ac-
cording to intention) or needs adjustment (10).

In some neural network models, the final configura-
tions of weights and responses of the output neurons
are discovered by the network itself and not forced
upon it by means of any predetermined output require-
ments. One of the most interesting examples of this type
of network was introduced by Hopfield (11). Hopfield
was intrigued by the way in which large systems in na-
ture often appear to generate spontaneously organized
behavior, even when they are composed of many inter-
acting elements. An example of such a system is the Is-
ing “spin glass” model for dilute magnetic alloys.

An Ising spin glass is composed of a large number of

particles, some of which carry a small magnetic field
and are therefore able to influence the alignment of the
other magnetic particles within the material. Whether a
particle will influence surrounding particles to orient
themselves in the same or the opposite direction de-
pends on the distance between them; thus, each particle
may receive conflicting influences from its neighbors.
The amount of conflict is referred to as “frustration,”
and the material as a whole, when left to its own de-
vices, will eventually settle into a stable state in which
the total amount of frustration is minimized. This prop-
erty arises from the cooperative interaction of a large
number of particles able to exert effects on each other.

In an Ising spin glass, the driving force for the devel-
opment of stable states is the tendency of the material
to minimize its total energy. Hopfield realized that a
large number of interacting neurons could also be
thought of as having an “energy” and therefore be sub-
ject to the same tendency to find stable states in which
the energy was lowest. These low-energy configura-
tions could in principle serve as memories. If the system
started near a stable state, then over time it would natu-
rally gravitate to that state, following the path of least
resistance. An intuitive way to see this is to imagine the
possible states of the network as forming a hillocky ter-
rain, with the hills representing energy levels and the
current state of the system being represented by a ball
rolling down one of the hills. Retrieval of a memory is
analogous to placing the ball near a hollow and follow-
ing it until it stops rolling. Such gradient-descent meth-
ods of retrieval effectively serve as content-addressable
memories, because presentation of part of the memory
to be retrieved will place the system in a state some-
where near a hollow (a local minimum) and allow the
full memory to be retrieved by energy minimization.

Hopfield’s model is biologically implausible, not least
because to allow stable states to evolve reliably, it re-
quires that the neurons be symmetrically interconnected
so that each neuron both sends and receives weights of
equal strength—something that is not observed in the
brain. A more serious problem is that such systems tend
to find false minima: that is, the ball rolls into a nearby
hollow that is not the “right” one. This problem wors-
ens as the number of hollows increases (i.e., as more
and more memories are stored), and eventually the net-
work becomes so overloaded with memories that even
previously stored ones become irretrievable, unless
some mechanism for forgetting is introduced. Never-
theless, the Hopfield model has introduced an impor-
tant new category of neuronal representation.

Competitive Learning

Another type of spontaneous representation forma-
tion by unsupervised learning is competitive learning
(12–14). A competitive network takes a series of inputs
and forms categories in such a way that similar inputs
are placed in the same category and dissimilar inputs in
different categories. In real-world terms, for example,
this might amount to learning, after being presented

FIGURE 3. Structure of a Back-Propagation Network With Three Hid-
den Unitsa

aAfter training, the connections become weighted in such a way that
each hidden unit comes to represent the cluster of features associated
with one of the objects presented to the network as input, and it will
in turn excite the appropriate target responses.
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with inputs of a sequence of apples and lemons, that
although each individual apple will have a subtly differ-
ent taste, color, and texture from that of other pre-
viously encountered apples, it will be more similar to
other apples than to the lemons. In neuronal terms this
means that because each new apple encountered evokes
a pattern of activity across the input units that is more
closely related to the activity evoked by other apples
than to that evoked by any of the lemons, the responses
of the output neurons can be organized into groups cor-
responding to the real-world categories.

A network that can do this kind of classification is
able to generalize to examples it has never seen before,
such as a completely new apple. Furthermore, it can
take ambiguous examples (such as a green, crunchy,
and sour-tasting fruit) and make a sensible decision
about which category to place it in—something that
traditional computer algorithms often find hard to do.
This kind of behavior therefore more closely approxi-
mates brain-like processing than conventional com-
puter-like processing.

BIOLOGICAL SYNAPTIC PLASTICITY

Although neural network research has always fo-
cused attention on the structure of network repre-
sentations, biologists have only recently begun to exam-
ine how knowledge is represented by living brains. The
general anatomical locus of thoughts, concepts, memo-
ries, and emotions remains unknown, although the de-
velopment of functional brain imaging techniques is
gradually localizing some types of representation to
various cortical regions. More important from the
point of view of synaptic plasticity research, the micro-
structure of representations also remains unknown; it
has yet to be established, for example, whether memo-
ries are stored in something resembling an associative
or competitive network, in a stable-state configuration
like a Hopfield network, or in an entirely novel manner.
Recently, however, both theoreticians and biologists
have begun to try to bridge the divide between artificial
and natural neural networks.

Prominent among theoretical approaches to the un-
derstanding of psychiatric conditions have been recent
efforts to model the symptoms of schizophrenia by in-
troducing “pathology” into artificial neural networks.
Cohen and Servan-Schreiber (15) used back-propaga-
tion networks to model performance on three psycho-
logical tests of contextual processing on which the per-
formance of schizophrenic subjects is known to be
impaired. They introduced a change in the networks
analogous to reducing dopamine in the prefrontal cor-
tex (the brain region thought to mediate performance
on these tasks) and found that the networks’ perform-
ance degraded in a way very similar to that of the
schizophrenic subjects. They suggested that their mod-
els may also provide “a framework for exploring the
role of neuromodulatory systems in other forms of ill-
ness” (p. 68). Ruppin et al. (16) used an attractor net-

work to model positive psychotic symptoms in persons
with schizophrenia. In their model, synaptic degenera-
tion in the input pathway was accompanied by an in-
crease in local connections (corresponding to reactive
synaptogenesis). Memory retrieval under these circum-
stances was relatively preserved, but spontaneous acti-
vation of noncued memory patterns occurred when
either the internal synaptic strength or noise increased
beyond a certain level. This biased spontaneous re-
trieval (analogous to delusions and hallucinations)
tended to be self-limiting as a global attractor state
formed, mimicking the progression from positive to
negative symptoms in schizophrenia. Spontaneous re-
trieval was also self-reinforcing, as are untreated psy-
chotic symptoms in young persons with schizophrenia.
The model generated several predictions about schizo-
phrenia that could be tested experimentally, including
synaptic compensation, increased spontaneous neural
activity, and environmental cuing of delusions and hal-
lucinations. It is hoped that a theoretical understanding
of schizophrenic processes may point the way toward
better-targeted treatments.

A great deal of the experimental work linking modi-
fiable synapses to macroscopic brain behavior has been
carried out in the hippocampal formation, a part of the
limbic system that has long been implicated in memory
formation and that more recently has been shown to be
involved with the formation (and possibly storage) of a
representation of the spatial environment (the so-called
cognitive map [17]). There are several reasons for de-
voting attention to the hippocampus. First, since space
is a relatively primitive concept, an understanding of
how it is represented by the brain may shed light on
how more complex and abstract representations, pecu-
liar to humans, are stored. Second, the hippocampus is
the principal site of degeneration in Alzheimer’s dis-
ease, in which amnesia is a prominent and early symp-
tom. An understanding of the physiology of the hippo-
campus may open up therapeutic possibilities in this
area. Third, the strength of its synapses has been found
to be readily modifiable, suggesting that here may be a
good place to search for mechanisms of memory stor-
age. Below, we present some of what is known about
the molecular mechanisms of hippocampal synaptic
plasticity, before concluding with recent findings which
suggest that a disturbance of such plasticity may under-
lie some psychiatric conditions.

Synaptic Modifiability in the Hippocampus

Although Hebb proposed his synaptic modification
rule in 1949, it was not until nearly 20 years later that
neurobiologists discarded their model of neurons as
McCulloch-Pitts elements with fixed synapses and be-
gan to look for physiological evidence of variability in
synaptic strength in real neurons. In 1973 a group of
researchers published the first detailed reports of artifi-
cially induced modification of synaptic strength in the
hippocampus (18, 19). They focused attention on the
hippocampus because of its suspected role in memory
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formation, and they found that if the perforant path
was stimulated with strong high-frequency electrical
pulses, then the synapses of those fibers onto the hippo-
campal cells became measurably stronger and stayed so
for many weeks (18, 19). Figure 4 illustrates the in-
crease in evoked response following high-frequency
stimulation of the perforant path. This phenomenon
was called long-term potentiation, and subsequent
studies showed that long-term potentiation could only
be induced, by analogy with the Hebb rule, if the input
fibers were stimulated while the postsynaptic cells were
already active (20, 21). The discovery of Hebb-like syn-
aptic plasticity in a putative memory structure was ar-
guably one of the most important neurophysiological
finds of the decade. There is now a great deal of experi-
mental (albeit not incontrovertible) evidence linking
hippocampal long-term potentiation to memory forma-

tion (22–27), and for this reason long-term
potentiation is currently regarded as the best
existing memory model.

Molecular Biology of Long-Term Potentia-
tion

The molecular biology of long-term poten-
tiation is of interest because it may possibly
explain how the computational properties of
plastic synapses arise—information that is
needed by neural network modelers if they
are to construct biologically realistic net-
works. A detailed review of the status of re-
search into the mechanisms underlying long-
term potentiation has been presented by Bliss
and Collingridge (28). Here we restrict dis-
cussion to an explanation of how hippocam-
pal neurons detect the association of events
needed to trigger synaptic strengthening.

A considerable body of evidence now dem-
onstrates that the necessary conditions for in-
duction of long-term potentiation are the fol-
lowing: 1) the postsynaptic cell must be active
(i.e., sufficiently depolarized, though not nec-
essarily firing), and 2) the presynaptic axon
terminal must have released neurotransmitter
(L-glutamate). If enough presynaptic axons
have been active simultaneously (a condition
known as the cooperativity requirement [29]),
then if their postsynaptic target is depolarized
(the associativity requirement), their synapses
will be strengthened. For the purposes of in-
ducing long-term potentiation, it does not mat-
ter how these two conditions come about; for
example, the postsynaptic cell may have been
artificially depolarized by current injection
(21), or presynaptic activity may have been
mimicked by iontophoretic glutamate applica-
tion. A further property of long-term potentia-
tion, input specificity, is that other axons ter-
minating on the same cell will not themselves
develop long-term potentiation unless they too

released neurotransmitter shortly before the postsynaptic
cell became active (20, 30).

The signal for long-term potentiation to occur is a
sudden influx of calcium ions into the postsynaptic cell;
if this is blocked—for example, by intracellular injection
of a Ca2+ chelator—then even if the associativity and
cooperativity requirements are met, induction of long-
term potentiation will not occur. The receptor respon-
sible for regulating Ca2+ influx in response to the con-
junction of events is the N-methyl-D-aspartate (NMDA)
subtype of excitatory amino acid receptor. The NMDA
receptor is unusual in that it will not open its ion chan-
nel in response to its ligand until the cell upon which
it resides has been depolarized. This is because under
resting membrane conditions, the channel is normally
blocked by Mg2+ ions (31). When the cell is depolar-
ized, these ions vacate the channel and calcium is free

FIGURE 4. Induction of Long-Term Potentiationa

aA) Change in synaptic strength in a population of hippocampal neurons following
Hebbian convergence of activity. Left: a single electrical stimulus to the perforant
path input fiber bundle produces a characteristic evoked response because of the
synchronous activation of a large population of postsynaptic granule cells in the
dentate gyrus. Middle: application of a high-frequency train of pulses causes mas-
sive postsynaptic depolarization, which, when combined with the presynaptic
transmitter release, provides the conditions under which long-term potentiation
will be induced. Right: after a high-frequency train, a single electrical stimulus of
the same intensity as before now evokes a larger response, reflecting the synaptic
strengthening that underlies long-term potentiation. B) The mechanism by which
high-frequency stimulation triggers induction of long-term potentiation is pro-
vided by the NMDA receptor. Top: the solid line illustrates the normal response
evoked during a high-frequency pulse train. The dotted line shows the response
when NMDA receptors have been blocked by intraperitoneal administration of
the NMDA receptor blocker 3-(2-carboxypiperazin-4-yl)-1-propenyl-1-phos-
phonic acid (CPP-ene). The bottom trace shows the difference between these
responses, which reflects the contribution of NMDA receptor current to the
evoked response during high-frequency stimulation.
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to flow into the cell. Because of the requirement for
strong postsynaptic depolarization to occur nearly si-
multaneously with presynaptic transmitter release,
long-term potentiation will only occur under unusual
conditions, such as those produced by a high-frequency
tetanus (figure 4). It is this simple mechanism that gives
long-term potentiation its Hebbian properties and, in
the behaving animal, according to current theories, en-
ables memory formation to occur.

Synaptic Plasticity, “Associability,” and Psychiatric
Disorder

Investigation of the phenomenon of long-term poten-
tiation has led to the hypothesis that under normal cir-
cumstances, the NMDA receptor may participate in the
formation of brain representations, perhaps through a
mechanism of changes in synaptic strength analogous
to those underlying long-term potentiation. It follows
that abnormal function of these receptors might con-
tribute to pathological disorders of representation. In
support of this hypothesis, abnormal “associability” is
a characteristic feature of many kinds of psychiatric
symptoms. For example, delusions are characterized by
a striking inability of the patient to be reasoned out of
an aberrant belief, plus a gradual spreading of the belief
system to incorporate new information as the disease
progresses. It is as if the associations between ideas that
form the framework of a normal belief system have be-
come so immutable that the usual processes of assimi-
lation and incorporation of new information can no
longer operate. This observation leads to the hypothesis
that mechanisms of synaptic plasticity may be abnor-
mal in these patients. In this light, it is interesting that
addition of a Hebbian component to the synaptic re-
sponses in the schizophrenia attractor model of Ruppin
et al. (16) produced a retrieval bias toward just a small
number of stored patterns—perhaps the network
equivalent of a delusional system! Clearly, many in-
sights into mental processes may be generated by such
attempts to model them artificially.

Post-ECT Amnesia and Long-Term Potentiation

Unilateral ECT is commonly used in the treatment of
severe unipolar depression, and one of the most com-
mon side effects is a marked (though transient) disorder
of memory function. Since memory storage is putatively
mediated by synaptic plasticity, we investigated the
possibility that electroconvulsive stimulation might be
associated with either a change in synaptic strength or
a change in the capacity of these synapses to support
long-term potentiation. Such a finding would support
the hypothesis that changes in synaptic connections un-
derlie the formation of brain representations and also
suggest some therapeutic possibilities for amnesia after
ECT in depressed patients.

Rats given a 10-day course of electroconvulsive
stimulation similar to that used in psychiatric practice
showed a large rise in the size of the evoked dentate

potential that strongly resembles long-term potentia-
tion (32, 33). This increase had a prolonged time
course, comparable to that of ECT-induced amnesia
(33, 34), and subsequent induction of long-term poten-
tiation in the same pathway was impaired. Because it is
known that repeated induction of long-term potentia-
tion eventually raises synaptic strengths to a maximum
level, beyond which they cannot be increased experi-
mentally, this occlusion of long-term potentiation sug-
gests that the changes after electroconvulsive stimula-
tion reflected true induction of long-term potentiation,
and that the failure of subsequent tetanization to induce
further long-term potentiation was due to saturation of
synaptic strengths. This raises the possibility that the
amnesia seen after repeated ECT arises because synap-
tic strengths are pushed to their ceiling levels, thus pre-
venting the formation of new memories until such time
as the strengths decay back to a baseline level.

Because induction of long-term potentiation depends
on NMDA receptors, an NMDA antagonist might also
be expected to block the post-ECT changes in evoked
potentials. As predicted, pretreatment with ketamine (a
potent NMDA antagonist) prevented the electrocon-
vulsive stimulation-associated increase in evoked re-
sponse size (35). We are currently investigating the pos-
sibility that amnesia after ECT in humans might be
ameliorated by administration of ketamine anesthesia
before treatment. Besides its benefits for patients under-
going ECT, such a finding would constitute important
support for the hypothesis that changes in synaptic
strength mediate memory storage.

CONCLUSIONS

This article provides an overview of current work on
representation formation by both artificial and biologi-
cal neural networks. The issue of how the brain repre-
sents information at a neuronal level is one of the most
important questions in neurobiology at the present
time. Psychiatry has tended to divide its attention be-
tween levels well below the neuronal, such as the mo-
lecular biology of neurotransmitter release, or well
above the neuronal, such as the formulation of psycho-
analytic models. The middle ground has traditionally
been turned over to psychology. However, recent dis-
coveries regarding the mechanisms of certain types of
cognitive processes are proving to be relevant to some
psychiatric disorders.

Because of the large size (in information terms) of the
brain and the current paucity of theories regarding the
functioning of complex dynamic systems, an under-
standing of how groups of neurons can form repre-
sentations cannot come about by observation or even
experiment alone, but requires that experiments inter-
act with theory to produce testable predictions on both
sides. This requirement has been one of the strong mo-
tivating forces behind the rapid development of the field
of neural networks, which has brought together several
disciplines to design and study complex models exhib-
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iting brain-like behavior. In turn, the findings of these
models are motivating experimental research into bio-
logical representation formation, an important area
that we hope will prove to be fertile ground for the dis-
covery and development of new therapies for psychiat-
ric disorders.
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