The American Psychiatric Association (APA) has updated its Privacy Policy and Terms of Use, including with new information specifically addressed to individuals in the European Economic Area. As described in the Privacy Policy and Terms of Use, this website utilizes cookies, including for the purpose of offering an optimal online experience and services tailored to your preferences.

Please read the entire Privacy Policy and Terms of Use. By closing this message, browsing this website, continuing the navigation, or otherwise continuing to use the APA's websites, you confirm that you understand and accept the terms of the Privacy Policy and Terms of Use, including the utilization of cookies.

×

OBJECTIVE: Velocardiofacial syndrome results from a microdeletion on chromosome 22 (22q11.2). Clinical studies indicate that more than 30% of children with the syndrome will develop schizophrenia. The authors sought to determine whether neuroanatomical features in velocardiofacial syndrome are similar to those reported in the literature on schizophrenia by measuring the volumes of the temporal lobe, superior temporal gyrus, and mesial temporal structures in children and adolescents with velocardiofacial syndrome. METHOD: Twenty-three children and adolescents with velocardiofacial syndrome and 23 comparison subjects, individually matched for age and gender, received brain magnetic resonance imaging (MRI) scans. Analysis of covariance models were used to compare regional brain volumes. Correlations between residualized brain volumes and age were standardized and compared with the Fisher r-to-z transformation. RESULTS: Children with velocardiofacial syndrome had significantly smaller average temporal lobe, superior temporal gyrus, and hippocampal volumes than normal comparison children, although these differences were commensurate with a lower overall brain size in the affected children. In a cross-sectional analysis, children with velocardiofacial syndrome exhibited aberrant volumetric reductions with age that were localized to the temporal lobe and left hippocampal regions. CONCLUSIONS: Abnormal temporal lobe and hippocampal development in velocardiofacial syndrome is potentially concordant with MRI findings in the schizophrenia literature. Temporal lobe and mesial temporal structures may represent a shared substrate for the effects of the 22q11.2 deletion and for the complex etiological pathways that lead to schizophrenia. Longitudinal research may help determine which children with velocardiofacial syndrome are at risk for serious psychiatric illness in adulthood.