0
Get Alert
Please Wait... Processing your request... Please Wait.
You must sign in to sign-up for alerts.

Please confirm that your email address is correct, so you can successfully receive this alert.

1
REGULAR ARTICLES   |    
Effects of methylphenidate on regional brain glucose metabolism in humans: relationship to dopamine D2 receptors
Am J Psychiatry 1997;154:50-55.
text A A A
PDF of the full text article.
Abstract

OBJECTIVE: The authors' goals were to determine whether baseline dopamine activity contributes to response to methylphenidate and to assess the pattern of metabolic responses associated with enhanced dopamine activity. METHOD: They used positron emission tomography with 2-deoxy-2[18F]fluoro-D-glucose to evaluate the effects of two sequential doses of methylphenidate on brain metabolism in 15 healthy subjects. Dopamine D2 receptor availability was measured with [11C]raclopride to evaluate its relation to methylphenidate-induced metabolic changes. RESULTS: Methylphenidate increased brain metabolism in six subjects, decreased it in two, and did not change it in seven; however, it consistently increased cerebellar metabolism. Methylphenidate significantly increased "relative" (region relative to the whole brain) metabolism in the cerebellum and decreased it in the basal ganglia. Regional metabolic changes in the cerebellum and the frontal and temporal cortices were significantly correlated with D2 availability. Frontal and temporal metabolism were increased in subjects with high D2 receptors and decreased in subjects with low D2 receptors. CONCLUSIONS: Methylphenidate induced variable changes in brain metabolism, but it consistently increased cerebellar metabolism. It also induced a significant reduction in relative metabolism in the basal ganglia. The significant association between metabolic changes in the frontal and temporal cortices and in the cerebellum and D2 receptors suggests that methylphenidate's metabolic effects in these brain regions are due in part to dopamine changes and that differences in D2 receptors may be one of the mechanisms accounting for the variability in response to methylphenidate.

Abstract Teaser
Figures in this Article

+

References

+
+

CME Activity

There is currently no quiz available for this resource. Please click here to go to the CME page to find another.
Submit a Comments
Please read the other comments before you post yours. Contributors must reveal any conflict of interest.
Comments are moderated and will appear on the site at the discertion of APA editorial staff.

* = Required Field
(if multiple authors, separate names by comma)
Example: John Doe



Web of Science® Times Cited: 107

Related Content
Articles
Books
Textbook of Traumatic Brain Injury, 2nd Edition > Chapter 3.  >
Textbook of Traumatic Brain Injury, 2nd Edition > Chapter 3.  >
Textbook of Traumatic Brain Injury, 2nd Edition > Chapter 35.  >
The American Psychiatric Publishing Textbook of Psychopharmacology, 4th Edition > Chapter 8.  >
The American Psychiatric Publishing Textbook of Psychopharmacology, 4th Edition > Chapter 10.  >
Topic Collections
Psychiatric News
PubMed Articles