0
Get Alert
Please Wait... Processing your request... Please Wait.
You must sign in to sign-up for alerts.

Please confirm that your email address is correct, so you can successfully receive this alert.

1
Images In Neuroscience   |    
Elucidating the Role of Brain-Derived Neurotrophic Factor in the Brain
Lisa M. Monteggia, Ph.D.
Am J Psychiatry 2007;164:1790-1790. doi:10.1176/appi.ajp.2007.07101634

Brain-derived neurotrophic factor (BDNF) is the most prevalent growth factor in the brain and regulates diverse aspects of neuronal function. However, the specific mechanisms whereby BDNF regulates complex behavior have been difficult to assess because of a lack of pharmacological tools selective for BDNF and the low viability of the BDNF knockout mouse. Partial (but viable) BDNF knockout animals, where gene expression is reduced at an early developmental stage, mix the effects of the BDNF depletion itself with the developmental abnormalities caused by low BDNF.

To study BDNF function in the adult brain, we developed an inducible mouse BDNF knockout, illustrated in the figure (A, B), where BDNF expression can be blocked at specific developmental times and in defined brain regions. Moreover, in this knockout animal, BDNF is not entirely deleted, but its levels are diminished. In the adult mouse BDNF knockout, BDNF reductions can be demonstrated in neurons of the neocortex and the hippocampus (C, D). Behavioral studies with this inducible knockout animal show that BDNF has distinguishable functions if depleted during early development (e.g., extreme impairments in learning and memory) compared with depletion only in the adult brain (e.g., measurable but less extensive impairments). The adult reduction in BDNF results in diminished long-term potentiation in the hippocampus, the process that is believed to be the cellular mechanism of learning and memory (E) and in alterations in memory performance in the knockout mice. Curiously, reductions in BDNF in adult animals show gender-specific differences in motor and depression behaviors. Specifically, adult male BDNF knockouts show hyperactivity without depression behavior, whereas the female knockout mice show no motor changes but they express depression behaviors. It may be the case that the loss of BDNF increases the vulnerability of cerebral systems to adverse environmental events and decreases overall neural resilience.

+Address reprint requests to Dr. Tamminga, Department of Psychiatry, UT Southwestern Medical Center, 5323 Harry Hines Blvd., #NE5.110, Dallas, TX 75390-9070; Carol.Tamminga@UTSouthwestern.edu (e-mail). Image accepted for publication October 2007 (doi: 10.1176/appi.ajp.2007.07101634). Supported by NIMH grant MH-70727 to Dr. Monteggia.

+The author reports no competing interests.

 
Figure 1.

The images in A and B show an in situ hybridization analysis of BDNF mRNA levels in brain slices. “A” is from a normal (wild type) mouse and “B” from a transgenic mouse, each 6 months old, with the BDNF gene deleted at 12 weeks of age. Contrasting the figures shows lower levels of BDNF expression in the adult knockout animal (B) compared to the wild type (A) throughout the neocortex and the hippocampus. In images C and D, fluorescent immunohistochemistry analysis illustrates the tissue distribution of the BDNF transgene: neurons are red, cells expressing the BDNF transgene are green, and the combination (i.e., neurons that express the transgene) are yellow. Ninety-eight percent of neurons in the neocortex (C) and of the hippocampus (D) undergo recombination to express the transgene (appearing in yellow). The graph E shows the change in field excitatory postsynaptic potentials (fEPSP) in CA1 evoked by stimulation from CA3; the adult control mouse showed at least a 170% enhancement of fEPSP (i.e., full long-term potentiation), whereas the BDNF knockout mouse showed only a partial enhancement of long-term potentiation at the same stimulation, suggesting a modulatory effect of BDNF on long-term potentiation induction.

Figure 1.

The images in A and B show an in situ hybridization analysis of BDNF mRNA levels in brain slices. “A” is from a normal (wild type) mouse and “B” from a transgenic mouse, each 6 months old, with the BDNF gene deleted at 12 weeks of age. Contrasting the figures shows lower levels of BDNF expression in the adult knockout animal (B) compared to the wild type (A) throughout the neocortex and the hippocampus. In images C and D, fluorescent immunohistochemistry analysis illustrates the tissue distribution of the BDNF transgene: neurons are red, cells expressing the BDNF transgene are green, and the combination (i.e., neurons that express the transgene) are yellow. Ninety-eight percent of neurons in the neocortex (C) and of the hippocampus (D) undergo recombination to express the transgene (appearing in yellow). The graph E shows the change in field excitatory postsynaptic potentials (fEPSP) in CA1 evoked by stimulation from CA3; the adult control mouse showed at least a 170% enhancement of fEPSP (i.e., full long-term potentiation), whereas the BDNF knockout mouse showed only a partial enhancement of long-term potentiation at the same stimulation, suggesting a modulatory effect of BDNF on long-term potentiation induction.

+

References

+
+

CME Activity

There is currently no quiz available for this resource. Please click here to go to the CME page to find another.
Submit a Comments
Please read the other comments before you post yours. Contributors must reveal any conflict of interest.
Comments are moderated and will appear on the site at the discertion of APA editorial staff.

* = Required Field
(if multiple authors, separate names by comma)
Example: John Doe



Web of Science® Times Cited: 6

Related Content
Books
The American Psychiatric Publishing Textbook of Psychopharmacology, 4th Edition > Chapter 1.  >
The American Psychiatric Publishing Textbook of Psychopharmacology, 4th Edition > Chapter 45.  >
The American Psychiatric Publishing Textbook of Psychopharmacology, 4th Edition > Chapter 10.  >
The American Psychiatric Publishing Textbook of Psychopharmacology, 4th Edition > Chapter 1.  >
Textbook of Traumatic Brain Injury, 2nd Edition > Chapter 3.  >
Topic Collections
Psychiatric News
PubMed Articles