The American Psychiatric Association (APA) has updated its Privacy Policy and Terms of Use, including with new information specifically addressed to individuals in the European Economic Area. As described in the Privacy Policy and Terms of Use, this website utilizes cookies, including for the purpose of offering an optimal online experience and services tailored to your preferences.

Please read the entire Privacy Policy and Terms of Use. By closing this message, browsing this website, continuing the navigation, or otherwise continuing to use the APA's websites, you confirm that you understand and accept the terms of the Privacy Policy and Terms of Use, including the utilization of cookies.

×

OBJECTIVE: Ziprasidone is an atypical antipsychotic drug that shows a higher affinity for serotonin 5-HT2 receptors compared with dopamine D2 receptors in vitro. The affinity of ziprasidone for these receptors in vivo in patients was examined in a positron emission tomography (PET) study. METHOD: The authors conducted a PET study to evaluate D2 occupancy (using [11C]raclopride) and 5-HT2 occupancy (using [18F]setoperone) in brain regions of interest in 16 patients with schizophrenia or schizoaffective disorder randomly assigned to receive 40, 80, 120, or 160 mg/day of ziprasidone, which reflected the recommended dose range. PET scanning was done after 3 weeks of administration and at trough plasma levels, i.e., 12–16 hours after the last dose. RESULTS: The mean 5-HT2 receptor occupancy was significantly higher than the mean D2 receptor occupancy (mean=76%, SD=15%, and mean=56%, SD=18%, respectively). The estimated plasma ziprasidone concentration associated with 50% maximal 5-HT2 receptor occupancy was almost four times lower than that for D2 receptor occupancy. CONCLUSIONS: These data affirm that ziprasidone is similar to other novel antipsychotics in having greater 5-HT2 than D2 receptor occupancy at therapeutic doses and suggest that the optimal effective dose of ziprasidone is closer to 120 mg/day than to the lower doses suggested by previous PET studies. The relatively high D2 receptor occupancy, even at trough plasma levels, suggests that ziprasidone is more similar to risperidone and olanzapine in receptor occupancy profile than to clozapine and quetiapine. Since ziprasidone plasma levels show significant (more than twofold) variation within a single dose cycle, studies that are aimed at peak plasma levels (6 hours after the last dose) and that examine extrastriatal regions are required to fully characterize the in vivo occupancy profile of ziprasidone.