The American Psychiatric Association (APA) has updated its Privacy Policy and Terms of Use, including with new information specifically addressed to individuals in the European Economic Area. As described in the Privacy Policy and Terms of Use, this website utilizes cookies, including for the purpose of offering an optimal online experience and services tailored to your preferences.

Please read the entire Privacy Policy and Terms of Use. By closing this message, browsing this website, continuing the navigation, or otherwise continuing to use the APA's websites, you confirm that you understand and accept the terms of the Privacy Policy and Terms of Use, including the utilization of cookies.

×
Published Online:

OBJECTIVE: Velocardiofacial syndrome is a common genetic condition often accompanied by mild cognitive impairment. Children and adolescents with velocardiofacial syndrome also are at greater risk for developing serious neuropsychiatric disorders in adulthood, particularly schizophrenia-like disorders. The purpose of this preliminary study was to 1) elucidate through brain imaging the neurobiological basis of cognitive and neuropsychiatric problems in velocardiofacial syndrome, and 2) consider the association between variations in neuroanatomy in velocardiofacial syndrome subjects and the associated neurobehavioral phenotype. METHOD: Fifteen children and adolescents with velocardiofacial syndrome were matched by age and gender with 15 comparison subjects. High-resolution magnetic resonance imaging scans were analyzed to provide quantitative measures of specified brain tissues and regions. Rater-blind morphometric analyses were conducted to examine tissue volumes of the four lobes and the cerebellum. RESULTS: Total brain volume was approximately 11% smaller in the children with velocardiofacial syndrome. Gray matter volume was reduced to a lesser extent (7.5%) than white matter volume (16.3%). Multivariate analyses of variance indicated a distinct pattern of regional morphological variation among the children with velocardiofacial syndrome. Specifically, frontal lobe tissue tended to be enlarged relative to the overall reduction in brain volume. Normal symmetry of parietal lobe tissue observed in the comparison group was not evident in the velocardiofacial syndrome group. This loss of symmetry was attributable to a significant reduction of gray matter in the left parietal lobe. CONCLUSIONS: Aberrant brain morphology is associated with velocardiofacial syndrome. These changes are potentially related to the language and learning deficits associated with the syndrome and may provide clues about neurodevelopmental pathways associated with schizophrenia.