0
Get Alert
Please Wait... Processing your request... Please Wait.
You must sign in to sign-up for alerts.

Please confirm that your email address is correct, so you can successfully receive this alert.

1
Articles   |    
Cross-Disorder Genomewide Analysis of Schizophrenia, Bipolar Disorder, and Depression
Jie Huang, M.D., M.S., M.P.H.; Roy H. Perlis, M.D., M.S.; Phil H. Lee, Ph.D.; A. John Rush, M.D.; Maurizio Fava, M.D.; Gary S. Sachs, M.D.; Jeffrey Lieberman, M.D.; Steven P. Hamilton, M.D., Ph.D.; Patrick Sullivan, M.D.; Pamela Sklar, M.D., Ph.D.; Shaun Purcell, Ph.D.; Jordan W. Smoller, M.D., Sc.D.
Am J Psychiatry 2010;167:1254-1263. doi:10.1176/appi.ajp.2010.09091335
View Author and Article Information
From the Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, and Psychiatric Genetics Program in Mood and Anxiety Disorders, Department of Psychiatry, Massachusetts General Hospital, Boston; the Stanley Center for Psychiatric Research, Broad Institute, Cambridge, Mass.; the Duke-National University of Singapore Graduate Medical School, Singapore; the Department of Psychiatry, College of Physicians and Surgeons, Columbia University and New York State Psychiatric Institute, New York; the Department of Psychiatry and Institute for Human Genetics, University of California, San Francisco; and the Departments of Genetics, Psychiatry, and Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, N.C.

Received Sept. 21, 2009; revision received March 10, 2010; accepted April 8, 2010

Dr. Perlis has received consulting fees from AstraZeneca, Eli Lilly, and Proteus Biomedical; and he has received royalties/patents from Concordant Rater Systems. Dr. Rush has received speaker's fees from Otsuka Pharmaceuticals; he has received consulting fees from Brain Resource and the University of Michigan; he has received research support from the National Institute of Mental Health; and he has received royalties from the University of Texas Southwestern Medical Center. Dr. Fava has received research support from Abbott Laboratories, Alkermes, Aspect Medical Systems, AstraZeneca, BioResearch, BrainCells, Bristol-Myers Squibb, Cephalon, Clinical Trial Solutions, Eli Lilly, EnVivo Pharmaceuticals, Forest Pharmaceuticals, Ganeden, GlaxoSmithKline, J and J Pharmaceuticals, Lichtwer Pharma GmbH, Lorex Phramaceuticals, NARSAD, National Center for Complementary and Alternative Medicine, National Institute on Drug and Alcohol Abuse, National Institute of Mental Health, Novartis, Organon, Pam-Lab, Pfizer, Pharmavite, Roche, Sanofi-Aventis, Shire, Solvay Pharmaceuticals, Synthelabo, and Wyeth-Ayerst; he has served as an advisor and/or consultant to Abbott Laboratories, Affectis Pharmaceuticals AG, Amarin, Aspect Medical Systems, AstraZeneca, Auspex Pharmaceuticals, Bayer AG, Best Practice Project Management, BioMarin Pharmaceuticals, Biovail Pharmaceuticals, BrainCells, Bristol-Myers Squibb, Cephalon, Clinical Trials Solutions, CNS Response, Compellis, Cypress Pharmaceuticals, Dov Pharmaceuticals, Eisai, Eli Lilly, EPIX Pharmaceuticals, Euthymics Bioscience, Fabre-Kramer Pharmaceuticals, Forest Pharmaceuticals, GlaxoSmithKline, Grunenthal GmbH, Janssen Pharmaceutica, Jazz Pharmaceuticals, J and J Pharmaceuticals, Knoll Pharmaceuticals, Labopharm, Lorex Pharmaceuticals, Lundbeck, MedAvante, Merck, Methylation Sciences, Neuronetics, Novartis, Nutrition 21, Organon, PamLab, Pfizer, PharmaStar, Pharmavite, Precision Human Biolaboratory, Prexa Pharmaceuticals, PsychoGenics, Psylin Neurosciences, Ridge Diagnostics, Roche, Sanofi-Aventis, Sepracor, Schering-Plough, Solvay Pharmaceuticals, Somaxon, Somerset Pharmaceuticals, Synthelabo, Takeda, Tetragenex, TransForm Pharmaceuticals, Transcept Pharmaceuticals, Vanda Pharmaceuticals, and Wyeth-Ayerst Laboratories; he has received speaking and publishing fees from Adamed, Advanced Meeting Partners, American Psychiatric Association, American Society of Clinical Psychopharmacology, AstraZeneca, Belvoir, Boehringer-Ingelheim, Bristol-Myers Squibb, Cephalon, Eli Lilly, Forest Pharmaceuticals, GlaxoSmithKline, Imedex, Novartis, Organon, Pfizer, PharmaStar, Massachusetts General Hospital Psychiatry Academy/Primedia, Massachusetts General Hospital Psychiatry Academy/Reed-Elsevier, UBC, and Wyeth-Ayerst Laboratories; he is a shareholder with Compellis; he has received a patent for sequential parallel comparison of design (SPCD) and a patent application for a combination of azapir-ones and bupropion in the treatment of major depressive disorder; and he has received royalties for the Massachusetts General Hospital Cognitive and Physical Functioning Questionnaire, Massachusetts General Hospital SFI, Massachusetts General Hospital Antidepressant Treatment Response Questionnaire, Massachusetts General Hospital Discontinuation-Emergent Signs and Symptoms scale, and Massachusetts General Hospital SAFER. Dr. Sachs has received research support from, served in a consulting or advisory capacity to, or participated in CME activities with Abbott Laboratories, AstraZeneca, Bristol-Myers Squibb, Cephalon, Concordant Rater Systems, Eli Lilly, GlaxoSmith-Kline, Janssen, Memory Pharmaceuticals, Merck, the National Institute of Mental Health, Novartis, Schering-Plough, Otsuka, Pfizer, Repligen, Sanofi-Aventis, Sepacor, Shire, Solvay, and Wyeth; and he is a shareholder with Concordant Rater Systems. Dr. Lieberman has received grant/research support from Allon, AstraZeneca, Bristol-Myers Squibb, Forest Laboratories, GlaxoSmithKline, Janssen, Merck, and Pfizer; he has served as a consultant to Cephalon, Eli Lilly, and Pfizer; he has served on the advisory boards of AstraZeneca, Bioline, Eli Lilly, Forest Laboratories, GlaxoSmithKline, Janssen, Intracellular Therapies, Otsuka, Pfizer, Psychogenics, and Wyeth; he has a patent with Repligen; and he has participated in Data and Safety Monitoring Board activities with Solvay. Dr. Sullivan has received unrestricted research support from Eli Lilly and Expression Analysis (SAB). Dr. Smoller has served as a consultant to Herman Dana Trust and RTI International. Drs. Huang, Lee, Hamilton, Sklar, and Purcell report no financial relationships with commercial interests.

Supported by the National Institutes of Health grant MH-079799 (Dr. Smoller).

Address correspondence and reprint requests to Dr. Smoller, Center for Human Genetic Research, Simches Research Building, 185 Cambridge St., Boston, MA 02114; jsmoller@hms.harvard.edu (e-mail).

Received September 21, 2009; Revised March 10, 2010; Accepted April 8, 2010.

Copyright © American Psychiatric Association

Abstract

Objective:  Family and twin studies indicate substantial overlap of genetic influences on psychotic and mood disorders. Linkage and candidate gene studies have also suggested overlap across schizophrenia, bipolar disorder, and major depressive disorder. The purpose of this study was to apply genomewide association study (GWAS) analysis to address the specificity of genetic effects on these disorders.

Method:  The authors combined GWAS data from three large effectiveness studies of schizophrenia (CATIE, genotyped: N=741), bipolar disorder (STEP-BD, geno-typed: N=1,575), and major depressive disorder (STAR*D, genotyped: N=1,938) as well as from psychiatrically screened control subjects (NIMH-Genetics Repository: N=1,204). A two-stage analytic procedure involving an omnibus test of allele frequency differences among case and control groups was applied, followed by a model selection step to identify the best-fitting model of allelic effects across disorders.

Results:  The strongest result was seen for a single nucleotide polymorphism near the adrenomedullin (ADM) gene (rs6484218), with the best-fitting model indicating that the effect was specific to bipolar II disorder. Findings also revealed evidence suggesting that several genes may have effects that transcend clinical diagnostic boundaries, including variants in NPAS3 that showed pleiotropic effects across schizophrenia, bipolar disorder, and major depressive disorder.

Conclusions:  This study provides the first genomewide significant evidence implicating variants near the ADM gene on chromosome 11p15 in psychopathology, with effects that appear to be specific to bipolar II disorder. Although genomewide signifi-cant evidence of cross-disorder effects was not detected, the results provide evidence that there are both pleiotropic and disorder-specific effects on major mental illness and illustrate an approach to dissecting the genetic basis of mood and psychotic disorders that can inform future large-scale cross-disorder GWAS analyses.

Abstract Teaser
Figures in this Article

Family and twin studies have established that schizophrenia, bipolar disorder, and major depressive disorder are familial and heritable phenotypes and that genetic factors are the most robustly validated risk factors for each disorder (13). However, several findings have called into question whether these disorders are etiologically distinct. First, several key clinical features, including psychosis, neurocognitive impairment, and suicidality, may be observed in all three disorders. Second, genetic epidemio-logic studies have documented that schizophrenia, bipolar disorder, and major depressive disorder share familial and genetic determinants. Family studies have shown familial coaggregation for schizophrenia and bipolar disorder (46) as well as bipolar disorder and major depressive disorder (1). In a population-based study of more than 2 million families, Lichtenstein et al. (7) demonstrated increased risks of schizophrenia among relatives of bipolar disorder probands and increased risks of bipolar disorder among relatives of schizophrenia probands. Comorbidity between the disorders was mainly attributable to overlapping genetic influences. Twin studies have similarly documented substantial shared genetic variance between psychotic disorders and bipolar disorder (8) and between bipolar disorder and major depressive disorder (9).

Although family and twin studies can estimate the shared heritability across disorders, they cannot identify the genetic loci contributing to this overlap. To date, evidence implicating specific chromosomal regions and genes in the shared liability to psychotic and mood disorders has largely been limited to linkage and candidate gene association studies. Some of the regions with the strongest linkage evidence for schizophrenia are also among regions most strongly linked to bipolar disorder (1012), although simulations suggest that such overlap could easily occur by chance (7). Several chromosomal microdeletions have also been associated with both mood and psychotic disorders. The balanced translocation ([1, 11][q42;q14.3]) that disrupts the DISC1 gene was first identified because of its cosegregation with a broad phenotype comprising schizophrenia, bipolar disorder, and recurrent major depressive disorder (13). The 22q11 microdeletion responsible for velocardiofacial syndrome also appears to confer increased risk of both psychotic and mood disorders (14, 15). Candidate gene studies have also found association between specific genes and both psychotic and mood disorder phenotypes (11, 16, 17), although results have been inconsistent (18, 19).

Genomewide association studies (GWAS), which provide a survey of common genetic variation across the genome, offer a more comprehensive method for identifying risk loci at the genotypic level. Early efforts to apply this technology to major psychiatric disorders have begun to bear fruit, with GWAS implicating several susceptibility genes for schizophrenia (20), bipolar disorder (21), and major depressive disorder (22). A recent analysis examined genewide evidence of association using data from both a bipolar disorder and schizophrenia GWAS, respectively, and found nominal evidence that several genes influence both disorders (23). Data from the International Schizophrenia Consortium demonstrated that common genetic variation (involving thousands of small-effect alleles) accounts for at least one-third of the total variation in liability to schizophrenia and that these polygenic risks are substantially shared with bipolar disorder (24). To date, however, no GWAS have been reported that examine cross-disorder analyses of the specificity of genetic influences for all three disorders. In the present study, we report the first genomewide cross-disorder analysis incorporating samples from the three largest treatment effectiveness studies of schizophrenia, bipolar disorder, and major depressive disorder, respectively. To address the issue of multiple comparisons, we utilized a novel approach that examines the patterns of cross-disorder effects in a single-model selection framework that controls the type I error risk at an experiment-wise level.

+

Clinical Samples

+

Bipolar disorder (Systematic Treatment Enhancement Program for Bipolar Disorder [STEP-BD]).

STEP-BD was a national, longitudinal public health initiative designed to examine the effectiveness of treatments and their impact on the course of bipolar disorder (25). Over a 7-year period, 4,361 participants were enrolled across 20 sites and followed for up to 2 years. To maximize external validity, enrollment was offered to all eligible patients seeking outpatient treatment at one of the participating sites (26). Eligibility for STEP-BD required a consensus DSM-IV bipolar diagnosis on both the Affective Disorders Evaluation and Mini-International Neuropsychiatric Interview-PLUS semistructured interviews, as previously described (25). From the parent STEP-BD study, 2,089 individuals were enrolled in a genetic substudy.

+

Schizophrenia (Clinical Antipsychotic Trials of Intervention Effectiveness [CATIE]).

CATIE was a multiphase randomized controlled trial of antipsychotic medications comprising 1,460 individuals with schizophrenia followed for up to 18 months (27, 28). Final study diagnoses of DSM-IV schizophrenia were established by CATIE clinicians using the Structured Clinical Interview for DSM-IV (29), including review of all available information (encompassing psychiatric and general medical records). As detailed previously (27), exclusion criteria included diagnosis of schizoaffective disorder, mental retardation or other cognitive disorder, single psychotic episode, and history of treatment resistance or serious adverse reaction to the study treatments. As previously described (30), the genetic substudy included 738 cases.

+

Major depressive disorder (Sequenced Treatment Alternatives to Relieve Depression [STAR*D]).

STAR*D was a multi-site, prospective, randomized multiphase clinical trial of outpatients with nonpsychotic major depressive disorder that enrolled 4,041 participants over a 3-year period (31). Eligibility required a single or recurrent nonpsychotic major depressive episode (by DSM-IV criteria) and a score of ≥14 on the 17-item Hamilton Depression Rating Scale. Relevant exclusion criteria included history of bipolar disorder, schizophrenia, schizoaffective disorder, or psychosis not otherwise specified. In the genetic substudy, blood samples were collected from 1,953 participants.

+

Control (National Institute of Mental Health [NIMH] Genetics Repository).

As previously described (32), control subjects were collected by Knowledge Networks, a survey and market research company whose panel contains approximately 60,000 households representative of the U.S. population. Subjects completed an online psychiatric screen that included questions regarding demographics, ancestry, and DSM-IV criteria for a range of psychiatric disorders. Participants who reported a history of schizophrenia, psychosis, or bipolar disorder were excluded from the GWAS analyses, as previously described (32). We also excluded individuals (N=126) who met criteria for a history of major depressive episode.

+

Genotyping

Genotyping of STEP-BD and CATIE samples was performed using the Affymetrix GeneChip Human Mapping 500K Array Set (Affymetrix, Inc., Santa Clara, Calif.), while one-half of the STAR*D sample was genotyped with the 500K array and one-half with the Affymetrix Human Single Nucleotide Polymorphism (SNP) Array, 5.0. Genotyping of the STEP-BD and control samples was performed at the Broad Institute, as previously described (33). Quality control processing of genotypes was described by Sklar et al. (32). Genotyping of the schizophrenia sample was performed at Perlegen Sciences (Mountain View, Calif.), as reported elsewhere (30). Genotyping of the STAR*D sample was performed at Affymetrix (500K) or at the University of California, San Francisco (5.0), as described previously (34).

+

Quality control and harmonization of genotype data.

Additional quality control for the combined genotypic data set was performed using PLINK (35), as previously described (32).

In brief, individuals were excluded if they had overall call rates <95%, excess or insufficient heterozygosity, or apparent relatedness. We only included non-Hispanic Caucasian individuals with European ancestry based on self-reported race and ethnicity information. The PLINK nearest neighbor method (35) was used to filter out potential outliers based on the first 10 multidimensional scaling factors. SNPs were excluded if they had a call rate <98%, had a minor allele frequency <1%, were inconsistent with Hardy-Weinberg equilibrium at a p value of <1×10—6, or showed differential rates of missingness in patient and control cases (32). After quality control steps were performed, 224,395 genotyped markers were retained, with a total genotyping rate in the final sample >99%. This set of genotyped markers is smaller than that reported for the primary GWAS reports of each sample (30, 32) because of the aforementioned additional quality control steps. We used BEAGLE, Version 3.1.1, (http://www.stat.auckland.ac.nz/∼bbrowning/beagle/beagle.html) to impute missing geno-types, with HapMap (Centre d'Etude du Polymorphisme Humain from Utah population, release 23, forward strand) as the reference panel. We excluded SNPs with an imputation quality R2 score <0.8 and obtained a total of 1,574,154 SNPs for the final analysis. For each SNP, imputed dosage was then summed for each of the five phenotype groups.

Further control for confounding by population stratification was performed by calculating the first 10 quantitative ancestry indices based on the merged data set using multidimensional scaling analysis (35). To examine the effect of each of the 10 quantitative indices (C1—C10), we calculated the genomic inflation factor (λ) from a GWA analysis of genotypes using each quantitative index as the dependent variable. We plotted the λ's against each of the 10 indices (analogous to a scree plot) and found excessive values only for C1—C4. Thus, we used these four indices as covariates in our GWAS of the phenotypic groups.

+

Statistical Analysis

Examining the pleiotropic of genetic variants across disorders in the GWAS context requires additional attention to problems of multiple testing and type I error. One approach to the analysis is to conduct a series of pairwise comparisons of the individual disorders and their combinations. However, this would effectively entail conducting multiple GWAS analyses, each of which would require correction for multiple testing. We have taken an alternative approach that involves a single genomewide omnibus test of association across disorders followed by a model selection approach that asks which configuration of phenotypes is most likely to be associated with a given variant. The sequence of analytic steps was as follows:

We first computed a likelihood ratio statistic (the omnibus test statistic) from a multinomial logistic regression in which allele frequencies can vary for each sample (schizophrenia, bipolar I disorder, bipolar II disorder, major depressive disorder, and control) relative to a null model in which allele frequencies are the same across all groups. This 4-df test is essentially a test of whether there is any association between the variant and any of the four target disorders.

Next, for each SNP whose omnibus test resulted in p<5×10-5, we fit nine additional log-linear models corresponding to the following nine patterns of allele frequency configurations: 1) shared by all disorders model ([schizophrenia, bipolar I, bipolar II, major depressive disorder]≠control); 2) shared by psychotic disorders model ([schizophrenia, bipolar I]≠[major depressive disorder, bipolar II, control]); 3) shared by mood disorders model ([bipolar I, bipolar II, major depressive disorder]≠[schizophrenia, controls]); 4) shared by depressive disorders model ([bipolar II, major depressive disorder]≠[bipolar I, schizophrenia, control]); 5) schizophrenia-specific (schizophrenia≠[major depressive disorder, bipolar I, bipolar II, control]); 6) bipolar disorder-specific ([bipolar I, bipolar II]≠[major depressive disorder, schizophrenia, control]); 7) bipolar I-specific (bipolar I≠[bipolar II, major depressive disorder, schizophrenia, control]); 8) bipolar II-specific (bipolar II≠[bipolar I, major depressive disorder, schizophrenia, control]); and 9) major depressive disorder-specific (major depressive disorder≠[schizophrenia, bipolar I, bipolar II, control]).

We then identified the best-fit model based on the Bayesian information criterion. Last, in order to con trol the marker-wise type I error at alpha, only the omnibus test p value (4 df) and the best-fit model are reported as primary results. Thus, the result of this analytic procedure is a p value for the single omnibus test and a best-fit model that indicates the phenotype(s) providing the best fit for genotype-phenotype association for a given variant.

As is customary in pooled GWAS analyses, we do not adjust p values for the prior GWAS results of the individual samples.

After quality control, 4,186 unrelated individuals of European ancestry were included in the GWAS analyses in four diagnostic groups: schizophrenia (N=402), bipolar I disorder (N=1,021), bipolar II disorder (N=493), major depressive disorder (N=1,210), and control (N=1,060) (Table 1). A Q-Q plot for the omnibus test is shown in Figure 1. The genomic inflation factor λ was 1.0517.

 
Anchor for Jump
TABLE 1.

Demographic Characteristics of Individuals of European Ancestry in GWAS Analysesa

Table Footer Note

a GWAS=genomewide association study; CATIE=Clinical Antipsychotic Trials of Intervention Effectiveness; STEP-BD=Systematic Treatment Enhancement Program for Bipolar Disorder; STAR*D=Sequenced Treatment Alternatives to Relieve Depression; NIMH=National Institute of Mental Health.

 
+

Genomewide Analysis and Phenotypic Model Selection

SNPs for which the omnibus p value was <5×10-5 are summarized in Table 2, according to the best-fitting model identified by the Bayesian information criterion. A total of 124 SNPs in 25 independent regions exceeded this threshold. For each gene region (positions based on the University of California Santa Cruz genome build hg18), Table 2 lists the number of SNPs in linkage disequilibrium (R2≥0.8) with the top SNP that exceeded the omnibus p value threshold of <5×10-5 (for complete results, see Table 1 in the data supplement accompanying the online version of this article).

 
Anchor for Jump
TABLE 2.

SNPs Reaching the Omnibus GWAS Test Threshold Among Individuals of European Ancestrya

Table Footer Note

a Threshold: p<5×10—5.

Table Footer Note

b Data indicate first allele.

Table Footer Note

c Data indicate minor allele frequency.

Table Footer Note

d Data indicate the p value of the genotyped SNP in the region.

One region (consisting of seven SNPs) on chromosome 11p15.4 exceeded a genomewide significant threshold for association (Figure 2). The top SNP achieving a p value of 3.93×10-8 was the genotyped SNP rs6484218. Two other SNPs, rs10770107 and rs7119983, also reached a genome-wide significance level of 4.07×10-8 and 4.22×10-8, respectively. These SNPs are located approximately 60 kb from the 3′ end of the nearest gene, adrenomedullin (ADM), and within an expressed sequence tag, EF537581, about which little is known. The best-fitting model for these SNPs indicated effects specific to bipolar II disorder. As shown in Table 2, the minor (A) allele of rs6484218 was less common in the bipolar II disorder group relative to all other groups. Further support for the bipolar II specific model is depicted in Figure 3 of the data supplement, which plots the Bayesian information criterion for all 10 models at rs6484218. As shown in the data supplement, the Bayesian information criterion for the bipolar II disorder-only model is substantially lower than that of all other models.

 
Anchor for JumpAnchor for Jump
FIGURE 2.

Region of Strongest SNP Associationa

aResults (—log10P ) are shown for directly genotyped (diamonds) and imputed (circles) SNPs. The most associated SNP is shown in dark red, and the color of the remaining markers reflects the linkage disequilibrium (R2) with the top SNP in each panel (increasing red hue associated with increasing (R2). The recombination rate (second y axis) is plotted in light blue and is based on the Centre d'Etude du Polymorphisme Humain from Utah HapMap population.

bp=3.93e—08.

The region showing the second strongest evidence of association consisted of three SNPs within intron 42 of the myosin XVIIIB (MYO18B) gene. The top genotyped SNP, rs1001021, showed a p value of 2.39×10-6, accompanied by two imputed SNPs, rs5752249 and rs16986621, with p values of <3.12×10-6. The best-fitting model (the all disorders model) indicated that these SNPs have pleiotropic effects influencing all three disorders. Another region showing the same pleiotropic effects across the three disorders consisted of 12 SNPs within intron 1 of the neuronal PAS domain 3 (NPAS3) gene (top SNP: rs4982029; p=3.96×10-6), a gene previously implicated in psychotic and mood disorders (3638). Three of the 12 SNPs were directly geno-typed (rs7142052, rs10483422, and rs4982031; all p values <9×10-6 [see Table 1 in the data supplement]).

Also of note, our model selection procedure suggested that genetic variants have effects that differ in their specificity with regard to diagnostic categories. For example, results for five of the 25 regions shown in Table 2 fit best with a model in which they have effects across schizophrenia, bipolar disorder, and major depressive disorder, while four were most consistent with effects on the broad category of mood disorders (bipolar disorder and major depressive disorder) and 10 appeared to fit best with a single disorder.

We combined genomewide association methods and a model selection procedure to examine the specificity of genetic influences on three major mental illnesses: schizophrenia, bipolar disorder, and major depressive disorder. This study is the first, to our knowledge, to systematically examine genetic effects across these disorders in a genomewide framework. We observed genomewide significant evidence of association for SNPs near the ADM gene on chromosome 11p. The best-fitting model for our strongest single marker results indicated effects specific to bipolar II disorder. Family studies have supported the hypothesis that bipolar I and II disorder are at least partly genetically distinct (1). Risks of bipolar II disorder tend to be highest among relatives of bipolar II disorder probands as opposed to those with bipolar I disorder or major depressive disorder (3944). Twin data support the heritability of bipolar II disorder but also suggest shared genetic influences with bipolar I disorder (45). Linkage analyses of bipolar II disorder have found modest evidence of linkage on chromosomes 9p and 18q21 (46). Interestingly, the sixth-ranked region (top SNP: rs11875674; p=3.97×10-6) in our GWAS is located on 18q21, and model selection implicates a bipolar II disorder effect, although this is 7 Mb from the reported linkage peak.

Our results are the first evidence, to our knowledge, implicating specific genetic variants in the risk for bipolar II disorder and provide support for the hypothesis that the genetic etiology of this disorder is distinguishable from other DSM-IV mood disorders. The genomewide signifi-cant signals we observed are located within an expressed sequence tag (EF537581) that has not been well-characterized. This expressed sequence tag does not appear to be brain-expressed (47), making it an implausible candidate for bipolar II disorder. The nearest gene to the associated SNPs is ADM, the gene encoding adrenomedullin. Adrenomedullin is widely expressed in the brain, and mice lacking CNS adrenomedullin exhibit hyperactivity, increased anxiety, and increased sensitivity to the neurotoxic effects of hypobaric hypoxia (48). Elevations of serum adrenomedullin have been reported in bipolar disorder (49), and a recent study identified a functional ADM variant (rs11042725) that was associated with self-reported response to paroxetine among patients with depression (50). We were unable to examine this SNP (or proxies for it) because it is not included in our GWAS or in the HapMap database. However, the SNPs for which we found association do not appear to be in strong linkage disequilibrium with SNPs in adrenomedullin.

Our results also provide preliminary evidence that several SNPs, including markers within several gene regions, have pleiotropic effects that cross traditional DSM-IV boundaries. Although these results did not reach genomewide thresholds for statistical significance, they are consistent with emerging evidence of shared genetic influences on psychotic and mood disorders. In particular, we note a group of SNPs in intron 1 of NPAS3 (top SNP with a p value of 3.96×10-6), for which the best-fitting model indicated effects on schizophrenia, bipolar disorder, and major depressive disorder. The NPAS3 gene encodes a neuronal transcription factor and was identified as a candidate locus for schizophrenia after a balanced translocation (t [9, 14][q34.2;q13]) disrupting the gene was observed to segregate with schizophrenia and learning disability (37). Mice deficient for NPAS3 display behavioral abnormalities, including altered prepulse inhibition, impaired recognition memory, and dysregulation of glutamatergic, dopaminergic, and serotoninergic neurotransmission as well as diminished hippocampal neurogenesis (5153). Pickard et al. (38) recently reported evidence that haplotypes of NPAS3 are associated with both schizophrenia and bipolar disorder, although the SNPs reported in Table 2 of the present study are not in linkage disequilibrium with those reported by Pickard et al. Nevertheless, our evidence that variation in NPAS3 may have pleiotropic effects on mood and psychotic disorders is intriguing, given the diverse neurobiologic functions of this gene.

Our results have several implications for future genetic studies of major mental illness. First, the analytic approach illustrated provides a basis for identifying genes that underlie the common genetic basis of schizophrenia, bipolar disorder, and major depressive disorder. It is likely that genes influencing these disorders consist of a combination of disorder-specific and shared susceptibility loci. Similar evidence for cross-disorder genetic effects have emerged from GWAS of other medical disorders, most notably autoimmune diseases where specific genetic markers are strongly associated with multiple, clinically distinctive conditions (54, 55). For example, nearly one-half of the risk alleles identified as influencing either type I diabetes or celiac disease have been shown to influence both disorders (55, 56). In addition, GWAS have demonstrated that a coding SNP in the PTPN22 gene is associated with reduced risk of Crohn's disease but increased risk of systemic lupus erythematosis, rheumatoid arthritis, type I diabetes, and Graves disease (54). Second, our results may inform case definition in future genetic studies of schizophrenia, bipolar disorder, and major depressive disorder. Specifically, the power of future analyses may be enhanced by combining affecteds across disorders for loci that appear to have cross-disorder effects. Finally, identifying susceptibility loci that have pleiotropic effects may reveal shared etiologic mechanisms underlying multiple diseases. Biological pathways involving these loci may represent targets for the development of broad-spectrum treatments with efficacy for a wider range of psychopathology than currently available options. We note that the STAR*D sample excluded patients with psychotic depression. While this would not bias our results, it might have implications for their generalizability. To the extent that psychosis itself may be under genetic influence, this exclusion might have made the diagnostic groups more distinct than they would have been had psychosis been present in the major depressive disorder group.

Our results should be considered in light of several limitations. First, given the available sample size, our study had limited power to detect modest genetic effects or rare susceptibility variants using a strict genomewide threshold for significance. Because this is the first report of its kind and the goal was to characterize genotype-phenotype relationships, we present results down to a threshold of p<5×10-5 to inform future analyses. Although our study detected only one region exceeding genomewide significant thresholds, recent pooled analyses of GWAS data have demonstrated that many variants that fall short of this threshold in a single study emerge as confirmed susceptibility loci when additional data sets are analyzed (20, 21). Thus, the top hits in our study provide preliminary evidence that awaits replication in future studies. A large-scale effort to use genomewide data to dissect within-disorder and cross-disorder influences has begun through the Psychiatric GWAS Consortium (57). Our results may inform these analyses, which ultimately may include GWAS data on >80,000 individuals across five disorders: schizophrenia, bipolar disorder, major depressive disorder, autism, and attention deficit hyperactivity disorder (57).

A second limitation is that by design, our model fitting approach did not involve statistical testing of each model versus the null hypothesis. Instead, to control inflation of type I error, we performed only the single omnibus test followed by model selection. A single test of the true underlying model would be expected to have greater power than the omnibus test. However, since the true model is unknown a priori, we would have to test multiple models to cover the range of possible true models. We have shown by simulation that the omnibus test has power comparable to a test of the true model, especially when the latter is corrected for multiple testing (unpublished data available upon request from Purcell et al.).

In summary, in a genomewide association analysis of three major psychiatric disorders, we identified a region of genomewide significant association on chromosome 11p15, near the ADM gene, which appears to be specific to bipolar II disorder. We also found preliminary evidence for both cross-disorder and disorder-specific influences on schizophrenia, bipolar disorder, and major depressive disorder. Consistent with previous reports in independent samples, we observed evidence that variation in NPAS3 has effects that transcend DSM-IV diagnostic categories. The methods illustrated here may inform larger-scale efforts to examine cross-disorder genetic effects.

The authors thank Rutgers Cell and DNA Repository for extracting DNA and providing samples. The STEP-BD project was funded in whole or in part with Federal funds from the National Institute of Mental Health (NIMH), National Institutes of Health, under contract N01MH-80001 to Gary S. Sachs, M.D. (principal investigator), Michael E. Thase, M.D. (co-principal investigator), and Mark S. Bauer, M.D. (co-principal investigator). Active STEP-BD sites and principal investigators included: Baylor College of Medicine (Lauren B. Marangell, M.D.); Case University (Joseph R. Calabrese, M.D.); Massachusetts General Hospital and Harvard Medical School (Andrew A. Nierenberg, M.D.); Portland VA Medical Center (Peter Hauser, M.D.); Stanford University School of Medicine (Terence A. Ketter, M.D.); University of Colorado Health Sciences Center (Marshall Thomas, M.D.); University of Massachusetts Medical Center (Jayendra Patel, M.D.); University of Oklahoma College of Medicine (Mark D. Fossey, M.D.); University of Pennsylvania Medical Center (Laszlo Gyulai, M.D.); University of Pittsburgh Western Psychiatric Institute and Clinic (Michael E. Thase, M.D.); and University of Texas Health Science Center at San Antonio (Charles L. Bowden, M.D.). Collection of DNA from consenting participants in STEP-BD was supported by N01-MH-80001 (Gary S. Sachs, M.D., principal investigator). The Sequenced Treatment Alternatives to Relieve Depression (STAR*D) study was supported by federal funds from NIMH under contract N01 MH-90003 to the University of Texas Southwestern Medical Center at Dallas (A. John Rush, M.D., principal investigator). Genotyping of STAR*D samples was funded by NIMH (R01 MH-072802; Steven P. Hamilton, M.D., Ph.D., principal investigator).The CATIE project was funded by NIMH contract N01 MH-90001. Control subjects from the NIMH Schizophrenia Genetics Initiative (NIMH-GI) data and bio-materials were gathered by the Molecular Genetics of Schizophrenia II (MGS-2) collaboration. The investigators and co-investigators are: Evanston Northwestern Healthcare/Northwestern University, Evanston, Ill., MH-059571, Pablo V. Gejman, M.D. (collaboration coordinator; principal investigator), Alan R. Sanders, M.D.; Emory University School of Medicine, Atlanta, MH-59587, Farooq Amin, M.D. (principal investigator); Louisiana State University Health Sciences Center, New Orleans, MH-067257, Nancy Buccola A.P.R.N., B.C., M.S.N. (principal investigator); University of California-Irvine, Irvine, Calif., MH-60870, William Byerley, M.D. (principal investigator); Washington University, St. Louis, Mo., U01 MH-060879, C. Robert Cloninger, M.D. (principal investigator); University of Iowa, Iowa City, IA, MH-59566, Raymond Crowe, M.D. (principal investigator), Donald Black, M.D.; University of Colorado, Denver, Colo., MH-059565, Robert Freedman, M.D. (principal investigator); University of Pennsylvania, Philadelphia, MH-061675, Douglas Levinson, M.D. (principal investigator); University of Queensland, Queensland, Australia, MH-059588, Bryan Mowry, M.D. (principal investigator); Mt. Sinai School of Medicine, New York, MH-59586, Jeremy Silverman, Ph.D. (principal investigator).

Smoller  JW;  Finn  CT:  Family, twin, and adoption studies of bipolar disorder.  Am J Med Genet C Semin Med Genet 2003; 123:48—58
[CrossRef]
 
Sullivan  PF;  Neale  MC;  Kendler  KS:  Genetic epidemiology of major depression: review and meta-analysis.  Am J Psychiatry 2000; 157:1552—1562
[CrossRef] | [PubMed]
 
Sullivan  PF:  The genetics of schizophrenia.  PLoS Med 2005; 2:e212
[CrossRef] | [PubMed]
 
Tsuang  MT;  Winokur  G;  Crowe  RR:  Morbidity risks of schizophrenia and affective disorders among first degree relatives of patients with schizophrenia, mania, depression and surgical conditions.  Br J Psychiatry 1980; 137:497—504
[CrossRef] | [PubMed]
 
Taylor  MA;  Berenbaum  SA;  Jampala  VC;  Cloninger  CR:  Are schizophrenia and affective disorder related? Preliminary data from a family study.  Am J Psychiatry 1993; 150:278—285
[PubMed]
 
Valles  V;  Van Os  J;  Guillamat  R;  Gutierrez  B;  Campillo  M;  Gento  P;  Fananas  L:  Increased morbid risk for schizophrenia in families of in-patients with bipolar illness.  Schizophr Res 2000; 42:83—90
[CrossRef] | [PubMed]
 
Lichtenstein  P;  Yip  BH;  Bjork  C;  Pawitan  Y;  Cannon  TD;  Sullivan  PF;  Hultman  CM:  Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: a population-based study.  Lancet 2009; 373:234—239
[CrossRef] | [PubMed]
 
Cardno  AG;  Rijsdijk  FV;  Sham  PC;  Murray  RM;  McGuffin  P:  A twin study of genetic relationships between psychotic symptoms.  Am J Psychiatry 2002; 159:539—545
[CrossRef] | [PubMed]
 
McGuffin  P;  Rijsdijk  F;  Andrew  M;  Sham  P;  Katz  R;  Cardno  A:  The heritability of bipolar affective disorder and the genetic relationship to unipolar depression.  Arch Gen Psychiatry 2003; 60:497—502
[CrossRef] | [PubMed]
 
Badner  JA;  Gershon  ES:  Meta-analysis of whole-genome linkage scans of bipolar disorder and schizophrenia.  Mol Psychiatry 2002; 7:405—411
[CrossRef] | [PubMed]
 
Craddock  N;  O'Donovan  MC;  Owen  MJ:  Genes for schizophrenia and bipolar disorder? Implications for psychiatric nosology.  Schizophr Bull 2006; 32:9—16
[CrossRef] | [PubMed]
 
McQueen  MB;  Devlin  B;  Faraone  SV;  Nimgaonkar  VL;  Sklar  P;  Smoller  JW;  Abou Jamra  R;  Albus  M;  Bacanu  SA;  Baron  M;  Barrett  TB;  Berrettini  W;  Blacker  D;  Byerley  W;  Cichon  S;  Coryell  W;  Craddock  N;  Daly  MJ;  Depaulo  JR;  Edenberg  HJ;  Foroud  T;  Gill  M;  Gilliam  TC;  Hamshere  M;  Jones  I;  Jones  L;  Juo  SH;  Kelsoe  JR;  Lambert  D;  Lange  C;  Lerer  B;  Liu  J;  Maier  W;  Mackinnon  JD;  Mc-Innis  MG;  McMahon  FJ;  Murphy  DL;  Nothen  MM;  Nurnberger  JI;  Pato  CN;  Pato  MT;  Potash  JB;  Propping  P;  Pulver  AE;  Rice  JP;  Rietschel  M;  Scheftner  W;  Schumacher  J;  Segurado  R;  Van Steen  K;  Xie  W;  Zandi  PP;  Laird  NM:  Combined analysis from eleven linkage studies of bipolar disorder provides strong evidence of susceptibility loci on chromosomes 6q and 8q.  Am J Hum Genet 2005; 77:582—595
[CrossRef] | [PubMed]
 
Blackwood  DH;  Fordyce  A;  Walker  MT;  St Clair  DM;  Porteous  DJ;  Muir  WJ:  Schizophrenia and affective disorders-cosegregation with a translocation at chromosome 1q42 that directly disrupts brain-expressed genes: clinical and P300 fi ndings in a family.  Am J Hum Genet 2001; 69:428—433
[CrossRef] | [PubMed]
 
Bassett  AS;  Chow  EW;  AbdelMalik  P;  Gheorghiu  M;  Husted  J;  Weksberg  R:  The schizophrenia phenotype in 22q11 deletion syndrome.  Am J Psychiatry 2003; 160:1580—1586
[CrossRef] | [PubMed]
 
Bassett  AS;  Chow  EW;  Husted  J;  Weksberg  R;  Caluseriu  O;  Webb  GD;  Gatzoulis  MA:  Clinical features of 78 adults with 22q11: deletion syndrome.  Am J Med Genet A 2005; 138:307—313
[PubMed]
 
Schulze  TG;  Ohlraun  S;  Czerski  PM;  Schumacher  J;  Kassem  L;  Deschner  M;  Gross  M;  Tullius  M;  Heidmann  V;  Kovalenko  S;  Jamra  RA;  Becker  T;  Leszczynska-Rodziewicz  A;  Hauser  J;  Illig  T;  Klopp  N;  Wellek  S;  Cichon  S;  Henn  FA;  McMahon  FJ;  Maier  W;  Propping  P;  Nothen  MM;  Rietschel  M:  Genotype-phenotype studies in bipolar disorder showing association between the DAOA/G30 locus and persecutory delusions: a first step toward a molecular genetic classifi cation of psychiatric phenotypes.  Am J Psychiatry 2005; 162:2101—2108
[CrossRef] | [PubMed]
 
Williams  NM;  Green  EK;  Macgregor  S;  Dwyer  S;  Norton  N;  Williams  H;  Raybould  R;  Grozeva  D;  Hamshere  M;  Zammit  S;  Jones  L;  Cardno  A;  Kirov  G;  Jones  I;  O'Donovan  MC;  Owen  MJ;  Craddock  N:  Variation at the DAOA/G30 locus infl uences susceptibility to major mood episodes but not psychosis in schizophrenia and bipolar disorder.  Arch Gen Psychiatry 2006; 63:366—373
[CrossRef] | [PubMed]
 
Sanders  AR;  Duan  J;  Levinson  DF;  Shi  J;  He  D;  Hou  C;  Burrell  GJ;  Rice  JP;  Nertney  DA;  Olincy  A;  Rozic  P;  Vinogradov  S;  Buccola  NG;  Mowry  BJ;  Freedman  R;  Amin  F;  Black  DW;  Silverman  JM;  Byerley  WF;  Crowe  RR;  Cloninger  CR;  Martinez  M;  Gejman  PV:  No significant association of 14 candidate genes with schizophrenia in a large European ancestry sample: implications for psychiatric genetics.  Am J Psychiatry 2008; 165:497—506
[CrossRef] | [PubMed]
 
Shi  J;  Badner  JA;  Gershon  ES;  Liu  C:  Allelic association of G72/G30 with schizophrenia and bipolar disorder: a comprehensive meta-analysis.  Schizophr Res 2008; 98:89—97
[CrossRef] | [PubMed]
 
O'Donovan  MC;  Craddock  N;  Norton  N;  Williams  H;  Peirce  T;  Moskvina  V;  Nikolov  I;  Hamshere  M;  Carroll  L;  Georgieva  L;  Dwyer  S;  Holmans  P;  Marchini  JL;  Spencer  CC;  Howie  B;  Leung  HT;  Hartmann  AM;  Möller  HJ;  Morris  DW;  Shi  Y;  Feng  G;  Hoffmann  P;  Propping  P;  Vasilescu  C;  Maier  W;  Rietschel  M;  Zammit  S;  Schumacher  J;  Quinn  EM;  Schulze  TG;  Williams  NM;  Giegling  I;  Iwata  N;  Ikeda  M;  Darvasi  A;  Shifman  S;  He  L;  Duan  J;  Sanders  AR;  Levinson  DF;  Gejman  PV;  Cichon  S;  Nöthen  MM;  Gill  M;  Corvin  A;  Rujescu  D;  Kirov  G;  Owen  MJ;  Buccola  NG;  Mowry  BJ;  Freedman  R;  Amin  F;  Black  DW;  Silverman  JM;  Byerley  WF;  Cloninger  CR;  Molecular Genetics of Schizophrenia Collaboration: Identifi cation of loci associated with schizophrenia by genome-wide association and follow-up.  Nat Genet 2008; 40:1053—1055
[CrossRef] | [PubMed]
 
Ferreira  MA;  O'Donovan  MC;  Meng  YA;  Jones  IR;  Ruderfer  DM;  Jones  L;  Fan  J;  Kirov  G;  Perlis  RH;  Green  EK;  Smoller  JW;  Grozeva  D;  Stone  J;  Nikolov  I;  Chambert  K;  Hamshere  ML;  Nimgaonkar  VL;  Moskvina  V;  Thase  ME;  Caesar  S;  Sachs  GS;  Franklin  J;  Gordon-Smith  K;  Ardlie  KG;  Gabriel  SB;  Fraser  C;  Blumenstiel  B;  Defelice  M;  Breen  G;  Gill  M;  Morris  DW;  Elkin  A;  Muir  WJ;  Mc-Ghee  KA;  Williamson  R;  MacIntyre  DJ;  Maclean  AW;  St Clair  D;  Robinson  M;  Van Beck  M;  Pereira  AC;  Kandaswamy  R;  McQuillin  A;  Collier  DA;  Bass  NJ;  Young  AH;  Lawrence  J;  Nicol Ferrier  I;  Anjorin  A;  Farmer  A;  Curtis  D;  Scolnick  EM;  McGuffin  P;  Daly  MJ;  Corvin  AP;  Holmans  PA;  Blackwood  DH;  Gurling  HM;  Owen  MJ;  Purcell  SM;  Sklar  P;  Craddock  N:  Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder.  Nat Genet 2008; 40:1056—1058
[CrossRef] | [PubMed]
 
Sullivan  PF;  de Geus  EJ;  Willemsen  G;  James  MR;  Smit  JH;  Zandbelt  T;  Arolt  V;  Baune  BT;  Blackwood  D;  Cichon  S;  Coventry  WL;  Domschke  K;  Farmer  A;  Fava  M;  Gordon  SD;  He  Q;  Heath  AC;  Heutink  P;  Holsboer  F;  Hoogendijk  WJ;  Hottenga  JJ;  Hu  Y;  Kohli  M;  Lin  D;  Lucae  S;  MacIntyre  DJ;  Maier  W;  McGhee  KA;  McGuffin  P;  Montgomery  GW;  Muir  WJ;  Nolen  WA;  Nothen  MM;  Perlis  RH;  Pirlo  K;  Posthuma  D;  Rietschel  M;  Rizzu  P;  Schosser  A;  Smit  AB;  Smoller  JW;  Tzeng  JY;  van Dyck  R;  Verhage  M;  Zitman  FG;  Martin  NG;  Wray  NR;  Boomsma  DI;  Penninx  BW:  Genomewide association for major depressive disorder: a possible role for the presynaptic protein piccolo.  Mol Psychiatry 2009; 14:359—375
[CrossRef] | [PubMed]
 
Moskvina  V;  Craddock  N;  Holmans  P;  Nikolov  I;  Pahwa  JS;  Green  E;  Owen  MJ;  O'Donovan  MC:  Gene-wide analyses of genomewide association data sets: evidence for multiple common risk alleles for schizophrenia and bipolar disorder and for overlap in genetic risk.  Mol Psychiatry 2009; 14:252—260
[CrossRef] | [PubMed]
 
Purcell  SM;  Wray  NR;  Stone  JL;  Visscher  PM;  O'Donovan  MC;  Sullivan  PF;  Sklar  P:  Common polygenic variation contributes to risk of schizophrenia and bipolar disorder.  Nature 2009; 460:748—752
[PubMed]
 
Sachs  GS;  Thase  ME;  Otto  MW;  Bauer  M;  Miklowitz  D;  Wisniewski  SR;  Lavori  P;  Lebowitz  B;  Rudorfer  M;  Frank  E;  Nierenberg  AA;  Fava  M;  Bowden  C;  Ketter  T;  Marangell  L;  Calabrese  J;  Kupfer  D;  Rosenbaum  JF:  Rationale, design, and methods of the Systematic Treatment Enhancement Program for Bipolar Disorder (STEP-BD).  Biol Psychiatry 2003; 53:1028—1042
[CrossRef] | [PubMed]
 
Kogan  JN;  Otto  MW;  Bauer  MS;  Dennehy  EB;  Miklowitz  DJ;  Zhang  HW;  Ketter  T;  Rudorfer  MV;  Wisniewski  SR;  Thase  ME;  Calabrese  J;  Sachs  GS:  Demographic and diagnostic characteristics of the first 1,000 patients enrolled in the Systematic Treatment Enhancement Program for Bipolar Disorder (STEP-BD).  Bipolar Disord 2004; 6:460—469
[CrossRef] | [PubMed]
 
Stroup  TS;  McEvoy  JP;  Swartz  MS;  Byerly  MJ;  Glick  ID;  Canive  JM;  McGee  MF;  Simpson  GM;  Stevens  MC;  Lieberman  JA:  The National Institute of Mental Health Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) project: schizophrenia trial design and protocol development.  Schizophr Bull 2003; 29:15—31
[PubMed]
[CrossRef]
 
Lieberman  JA;  Stroup  TS;  McEvoy  JP;  Swartz  MS;  Rosenheck  RA;  Perkins  DO;  Keefe  RS;  Davis  SM;  Davis  CE;  Lebowitz  BD;  Severe  J;  Hsiao  JK:  Effectiveness of antipsychotic drugs in patients with chronic schizophrenia.  N Engl J Med 2005; 353:1209—1223
[CrossRef] | [PubMed]
 
Spitzer  R;  Williams  J;  Gibbon  M:  Structured Clinical Interview for DSM-IV, Outpatient Version (SCID-OP).  New York,  Biometrics Research Department, New York State Psychiatric Institute, 1996
 
Sullivan  PF;  Lin  D;  Tzeng  JY;  van den Oord  E;  Perkins  D;  Stroup  TS;  Wagner  M;  Lee  S;  Wright  FA;  Zou  F;  Liu  W;  Downing  AM;  Lieberman  J;  Close  SL:  Genomewide association for schizophrenia in the CATIE study: results of stage 1.  Mol Psychiatry 2008; 13:570—584
[CrossRef] | [PubMed]
 
Rush  AJ;  Fava  M;  Wisniewski  SR;  Lavori  PW;  Trivedi  MH;  Sackeim  HA;  Thase  ME;  Nierenberg  AA;  Quitkin  FM;  Kashner  TM;  Kupfer  DJ;  Rosenbaum  JF;  Alpert  J;  Stewart  JW;  McGrath  PJ;  Biggs  MM;  Shores-Wilson  K;  Lebowitz  BD;  Ritz  L;  Niederehe  G:  Sequenced Treatment Alternatives to Relieve Depression (STAR*D): rationale and design.  Control Clin Trials 2004; 25:119—142
[CrossRef] | [PubMed]
 
Sklar  P;  Smoller  JW;  Fan  J;  Ferreira  MA;  Perlis  RH;  Chambert  K;  Nimgaonkar  VL;  McQueen  MB;  Faraone  SV;  Kirby  A;  de Bakker  PI;  Ogdie  MN;  Thase  ME;  Sachs  GS;  Todd-Brown  K;  Gabriel  SB;  Sougnez  C;  Gates  C;  Blumenstiel  B;  Defelice  M;  Ardlie  KG;  Franklin  J;  Muir  WJ;  McGhee  KA;  MacIntyre  DJ;  McLean  A;  Van-Beck  M;  McQuillin  A;  Bass  NJ;  Robinson  M;  Lawrence  J;  Anjorin  A;  Curtis  D;  Scolnick  EM;  Daly  MJ;  Blackwood  DH;  Gurling  HM;  Purcell  SM:  Whole-genome association study of bipolar disorder.  Mol Psychiatry 2008; 13:558—569
[CrossRef] | [PubMed]
 
Saxena  R;  Voight  BF;  Lyssenko  V;  Burtt  NP;  de Bakker  PI;  Chen  H;  Roix  JJ;  Kathiresan  S;  Hirschhorn  JN;  Daly  MJ;  Hughes  TE;  Groop  L;  Altshuler  D;  Almgren  P;  Florez  JC;  Meyer  J;  Ardlie  K;  Bengtsson  Bostrom K;  Isomaa  B;  Lettre  G;  Lindblad  U;  Lyon  HN;  Melander  O;  Newton-Cheh  C;  Nilsson  P;  Orho-Melander  M;  Rastam  L;  Speliotes  EK;  Taskinen  MR;  Tuomi  T;  Guiducci  C;  Berglund  A;  Carlson  J;  Gianniny  L;  Hackett  R;  Hall  L;  Holmkvist  J;  Laurila  E;  Sjogren  M;  Sterner  M;  Surti  A;  Svensson  M;  Tewhey  R;  Blumenstiel  B;  Parkin  M;  Defelice  M;  Barry  R;  Brodeur  W;  Camarata  J;  Chia  N;  Fava  M;  Gibbons  J;  Handsaker  B;  Healy  C;  Nguyen  K;  Gates  C;  Sougnez  C;  Gage  D;  Nizzari  M;  Gabriel  SB;  Chirn  GW;  Ma  Q;  Parikh  H;  Richardson  D;  Ricke  D;  Purcell  S:  Genome-wide association analysis identifi es loci for type 2 diabetes and triglyceride levels.  Science 2007; 316:1331—1336
[CrossRef] | [PubMed]
 
Garriock  HA;  Kraft  JB;  Shyn  SI;  Peters  EJ;  Yokoyama  JS;  Jenkins  GD;  Reinalda  MS;  Slager  SL;  McGrath  PJ;  Hamilton  SP:  A genomewide association study of citalopram response in major depressive disorder.  Biol Psychiatry 2010; 67:133—138
[CrossRef] | [PubMed]
 
Purcell  S;  Neale  B;  Todd-Brown  K;  Thomas  L;  Ferreira  MA;  Bender  D;  Maller  J;  Sklar  P;  de Bakker  PI;  Daly  MJ;  Sham  PC:  PLINK: a tool set for whole-genome association and population-based linkage analyses.  Am J Hum Genet 2007; 81:559—575
[CrossRef] | [PubMed]
 
Kamnasaran  D;  Muir  WJ;  Ferguson-Smith  MA;  Cox  DW:  Disruption of the neuronal PAS3 gene in a family affected with schizophrenia.  J Med Genet 2003; 40:325—332
[CrossRef] | [PubMed]
 
Pickard  BS;  Malloy  MP;  Porteous  DJ;  Blackwood  DH;  Muir  WJ:  Disruption of a brain transcription factor, NPAS3, is associated with schizophrenia and learning disability.  Am J Med Genet B Neuropsychiatr Genet 2005; 136B:26—32
[CrossRef] | [PubMed]
 
Pickard  BS;  Christoforou  A;  Thomson  PA;  Fawkes  A;  Evans  KL;  Morris  SW;  Porteous  DJ;  Blackwood  DH;  Muir  WJ:  Interacting haplotypes at the NPAS3 locus alter risk of schizophrenia and bipolar disorder.  Mol Psychiatry 2009; 14:874—884
[CrossRef] | [PubMed]
 
Gershon  ES;  Hamovit  J;  Guroff  JJ;  Dibble  E;  Leckman  JF;  Sceery  W;  Targum  SD;  Nurnberger  JI  Jr;  Goldin  LR;  Bunney  WE  Jr:  A family study of schizoaffective, bipolar I, bipolar II, unipolar and normal control probands.  Arch Gen Psychiatry 1982; 39:1157—1167
[PubMed]
[CrossRef]
 
Coryell  W;  Endicott  J;  Reich  T;  Andreasen  N;  Keller  M:  A family study of bipolar II disorder.  Br J Psychiatry 1984; 145:49—54
[CrossRef] | [PubMed]
 
Endicott  J;  Nee  J;  Andreasen  N;  Clayton  P;  Keller  M;  Coryell  W:  Bipolar II: Combine or keep separate? J Affect Disord 1985; 8:17—28
[CrossRef] | [PubMed]
 
Andreasen  NC;  Rice  J;  Endicott  J;  Coryell  W;  Grove  WM;  Reich  T:  Familial rates of affective disorder: a report from the National Institute of Mental Health Collaborative Study.  Arch Gen Psychiatry 1987; 44:461—469
[PubMed]
[CrossRef]
 
Heun  R;  Maier  W:  The distinction of bipolar II disorder from bipolar I and recurrent unipolar depression: results of a controlled family study.  Acta Psychiatr Scand 1993; 87:279—284
[CrossRef] | [PubMed]
 
Simpson  SG;  Folstein  SE;  Meyers  DA;  McMahon  FJ;  Brusco  DM;  DePaulo  JR  Jr:  Bipolar II: The most common bipolar phenotype? Am J Psychiatry 1993; 150:901—903
[PubMed]
 
Edvardsen  J;  Torgersen  S;  Roysamb  E;  Lygren  S;  Skre  I;  Onstad  S;  Oien  PA:  Heritability of bipolar spectrum disorders: Unity or heterogeneity? J Affect Disord 2008; 106:229—240
[CrossRef] | [PubMed]
 
Nwulia  EA;  Miao  K;  Zandi  PP;  Mackinnon  DF;  DePaulo  JR  Jr;  McInnis  MG:  Genome-wide scan of bipolar II disorder.  Bipolar Disord 2007; 9:580—588
[CrossRef] | [PubMed]
 
Bettoni  F;  Filho  FC;  Grosso  DM;  Galante  PA;  Parmigiani  RB;  Geraldo  MV;  Henrique-Silva  F;  Oba-Shinjo  SM;  Marie  SK;  Soares  FA;  Brentani  HP;  Simpson  AJ;  de Souza  SJ;  Camargo  AA:  Identifi cation of FAM46D as a novel cancer/testis antigen using EST data and serological analysis.  Genomics 2009; 94:153—160
[CrossRef] | [PubMed]
 
Fernandez  AP;  Serrano  J;  Tessarollo  L;  Cuttitta  F;  Martinez  A:  Lack of adrenomedullin in the mouse brain results in behavioral changes, anxiety, and lower survival under stress conditions.  Proc Natl Acad Sci U S A 2008; 105:12581—12586
[CrossRef] | [PubMed]
 
Savas  HA;  Herken  H;  Yurekli  M;  Uz  E;  Tutkun  H;  Zoroglu  SS;  Ozen  ME;  Cengiz  B;  Akyol  O:  Possible role of nitric oxide and adrenomedullin in bipolar affective disorder.  Neuropsychobiology 2002; 45:57—61
[CrossRef] | [PubMed]
 
Glubb  DM;  McHugh  PC;  Deng  X;  Joyce  PR;  Kennedy  MA:  Association of a functional polymorphism in the adrenomedullin gene (ADM) with response to paroxetine.  Pharmacogenomics J 2010; 10:126—133
[CrossRef] | [PubMed]
 
Brunskill  EW;  Ehrman  LA;  Williams  MT;  Klanke  J;  Hammer  D;  Schaefer  TL;  Sah  R;  Dorn  GW  2nd;  Potter  SS;  Vorhees  CV:  Abnormal neurodevelopment, neurosignaling and behaviour in NPAS3-deficient mice.  Eur J Neurosci 2005; 22:1265—1276
[CrossRef] | [PubMed]
 
Erbel-Sieler  C;  Dudley  C;  Zhou  Y;  Wu  X;  Estill  SJ;  Han  T;  Diaz-Arrastia  R;  Brunskill  EW;  Potter  SS;  McKnight  SL:  Behavioral and regulatory abnormalities in mice deficient in the NPAS1 and NPAS3 transcription factors.  Proc Natl Acad Sci U S A 2004; 101:13648—13653
[CrossRef] | [PubMed]
 
Pieper  AA;  Wu  X;  Han  TW;  Estill  SJ;  Dang  Q;  Wu  LC;  Reece-Fincanon  S;  Dudley  CA;  Richardson  JA;  Brat  DJ;  McKnight  SL:  The neuronal PAS domain protein 3 transcription factor controls FGF-mediated adult hippocampal neurogenesis in mice.  Proc Natl Acad Sci U S A 2005; 102:14052—14057
[CrossRef] | [PubMed]
 
Lettre  G;  Rioux  JD:  Autoimmune diseases: insights from genome-wide association studies.  Hum Mol Genet 2008; 17:R116—R121
[CrossRef] | [PubMed]
 
Smyth  DJ;  Plagnol  V;  Walker  NM;  Cooper  JD;  Downes  K;  Yang  JH;  Howson  JM;  Stevens  H;  McManus  R;  Wijmenga  C;  Heap  GA;  Dubois  PC;  Clayton  DG;  Hunt  KA;  van Heel  DA;  Todd  JA:  Shared and distinct genetic variants in type 1 diabetes and celiac disease.  N Engl J Med 2008; 359:2767—2777
[CrossRef] | [PubMed]
 
Plenge  RM:  Shared genetic risk factors for type 1 diabetes and celiac disease.  N Engl J Med 2008; 359:2837—2838
[CrossRef] | [PubMed]
 
Psychiatric GWAS Consortium Steering Committee:  A framework for interpreting genome-wide association studies of psychiatric disorders.  Mol Psychiatry 2009; 14:10—17
[CrossRef] | [PubMed]
 
References Container

FIGURE 1. 

Q-Q Plot for the Genomewide Omnibus Test

FIGURE 2. 

Region of Strongest SNP Associationa

aResults (—log10P ) are shown for directly genotyped (diamonds) and imputed (circles) SNPs. The most associated SNP is shown in dark red, and the color of the remaining markers reflects the linkage disequilibrium (R2) with the top SNP in each panel (increasing red hue associated with increasing (R2). The recombination rate (second y axis) is plotted in light blue and is based on the Centre d'Etude du Polymorphisme Humain from Utah HapMap population.

bp=3.93e—08.

Anchor for Jump
TABLE 1.

Demographic Characteristics of Individuals of European Ancestry in GWAS Analysesa

Table Footer Note

a GWAS=genomewide association study; CATIE=Clinical Antipsychotic Trials of Intervention Effectiveness; STEP-BD=Systematic Treatment Enhancement Program for Bipolar Disorder; STAR*D=Sequenced Treatment Alternatives to Relieve Depression; NIMH=National Institute of Mental Health.

Anchor for Jump
TABLE 2.

SNPs Reaching the Omnibus GWAS Test Threshold Among Individuals of European Ancestrya

Table Footer Note

a Threshold: p<5×10—5.

Table Footer Note

b Data indicate first allele.

Table Footer Note

c Data indicate minor allele frequency.

Table Footer Note

d Data indicate the p value of the genotyped SNP in the region.

+

References

Smoller  JW;  Finn  CT:  Family, twin, and adoption studies of bipolar disorder.  Am J Med Genet C Semin Med Genet 2003; 123:48—58
[CrossRef]
 
Sullivan  PF;  Neale  MC;  Kendler  KS:  Genetic epidemiology of major depression: review and meta-analysis.  Am J Psychiatry 2000; 157:1552—1562
[CrossRef] | [PubMed]
 
Sullivan  PF:  The genetics of schizophrenia.  PLoS Med 2005; 2:e212
[CrossRef] | [PubMed]
 
Tsuang  MT;  Winokur  G;  Crowe  RR:  Morbidity risks of schizophrenia and affective disorders among first degree relatives of patients with schizophrenia, mania, depression and surgical conditions.  Br J Psychiatry 1980; 137:497—504
[CrossRef] | [PubMed]
 
Taylor  MA;  Berenbaum  SA;  Jampala  VC;  Cloninger  CR:  Are schizophrenia and affective disorder related? Preliminary data from a family study.  Am J Psychiatry 1993; 150:278—285
[PubMed]
 
Valles  V;  Van Os  J;  Guillamat  R;  Gutierrez  B;  Campillo  M;  Gento  P;  Fananas  L:  Increased morbid risk for schizophrenia in families of in-patients with bipolar illness.  Schizophr Res 2000; 42:83—90
[CrossRef] | [PubMed]
 
Lichtenstein  P;  Yip  BH;  Bjork  C;  Pawitan  Y;  Cannon  TD;  Sullivan  PF;  Hultman  CM:  Common genetic determinants of schizophrenia and bipolar disorder in Swedish families: a population-based study.  Lancet 2009; 373:234—239
[CrossRef] | [PubMed]
 
Cardno  AG;  Rijsdijk  FV;  Sham  PC;  Murray  RM;  McGuffin  P:  A twin study of genetic relationships between psychotic symptoms.  Am J Psychiatry 2002; 159:539—545
[CrossRef] | [PubMed]
 
McGuffin  P;  Rijsdijk  F;  Andrew  M;  Sham  P;  Katz  R;  Cardno  A:  The heritability of bipolar affective disorder and the genetic relationship to unipolar depression.  Arch Gen Psychiatry 2003; 60:497—502
[CrossRef] | [PubMed]
 
Badner  JA;  Gershon  ES:  Meta-analysis of whole-genome linkage scans of bipolar disorder and schizophrenia.  Mol Psychiatry 2002; 7:405—411
[CrossRef] | [PubMed]
 
Craddock  N;  O'Donovan  MC;  Owen  MJ:  Genes for schizophrenia and bipolar disorder? Implications for psychiatric nosology.  Schizophr Bull 2006; 32:9—16
[CrossRef] | [PubMed]
 
McQueen  MB;  Devlin  B;  Faraone  SV;  Nimgaonkar  VL;  Sklar  P;  Smoller  JW;  Abou Jamra  R;  Albus  M;  Bacanu  SA;  Baron  M;  Barrett  TB;  Berrettini  W;  Blacker  D;  Byerley  W;  Cichon  S;  Coryell  W;  Craddock  N;  Daly  MJ;  Depaulo  JR;  Edenberg  HJ;  Foroud  T;  Gill  M;  Gilliam  TC;  Hamshere  M;  Jones  I;  Jones  L;  Juo  SH;  Kelsoe  JR;  Lambert  D;  Lange  C;  Lerer  B;  Liu  J;  Maier  W;  Mackinnon  JD;  Mc-Innis  MG;  McMahon  FJ;  Murphy  DL;  Nothen  MM;  Nurnberger  JI;  Pato  CN;  Pato  MT;  Potash  JB;  Propping  P;  Pulver  AE;  Rice  JP;  Rietschel  M;  Scheftner  W;  Schumacher  J;  Segurado  R;  Van Steen  K;  Xie  W;  Zandi  PP;  Laird  NM:  Combined analysis from eleven linkage studies of bipolar disorder provides strong evidence of susceptibility loci on chromosomes 6q and 8q.  Am J Hum Genet 2005; 77:582—595
[CrossRef] | [PubMed]
 
Blackwood  DH;  Fordyce  A;  Walker  MT;  St Clair  DM;  Porteous  DJ;  Muir  WJ:  Schizophrenia and affective disorders-cosegregation with a translocation at chromosome 1q42 that directly disrupts brain-expressed genes: clinical and P300 fi ndings in a family.  Am J Hum Genet 2001; 69:428—433
[CrossRef] | [PubMed]
 
Bassett  AS;  Chow  EW;  AbdelMalik  P;  Gheorghiu  M;  Husted  J;  Weksberg  R:  The schizophrenia phenotype in 22q11 deletion syndrome.  Am J Psychiatry 2003; 160:1580—1586
[CrossRef] | [PubMed]
 
Bassett  AS;  Chow  EW;  Husted  J;  Weksberg  R;  Caluseriu  O;  Webb  GD;  Gatzoulis  MA:  Clinical features of 78 adults with 22q11: deletion syndrome.  Am J Med Genet A 2005; 138:307—313
[PubMed]
 
Schulze  TG;  Ohlraun  S;  Czerski  PM;  Schumacher  J;  Kassem  L;  Deschner  M;  Gross  M;  Tullius  M;  Heidmann  V;  Kovalenko  S;  Jamra  RA;  Becker  T;  Leszczynska-Rodziewicz  A;  Hauser  J;  Illig  T;  Klopp  N;  Wellek  S;  Cichon  S;  Henn  FA;  McMahon  FJ;  Maier  W;  Propping  P;  Nothen  MM;  Rietschel  M:  Genotype-phenotype studies in bipolar disorder showing association between the DAOA/G30 locus and persecutory delusions: a first step toward a molecular genetic classifi cation of psychiatric phenotypes.  Am J Psychiatry 2005; 162:2101—2108
[CrossRef] | [PubMed]
 
Williams  NM;  Green  EK;  Macgregor  S;  Dwyer  S;  Norton  N;  Williams  H;  Raybould  R;  Grozeva  D;  Hamshere  M;  Zammit  S;  Jones  L;  Cardno  A;  Kirov  G;  Jones  I;  O'Donovan  MC;  Owen  MJ;  Craddock  N:  Variation at the DAOA/G30 locus infl uences susceptibility to major mood episodes but not psychosis in schizophrenia and bipolar disorder.  Arch Gen Psychiatry 2006; 63:366—373
[CrossRef] | [PubMed]
 
Sanders  AR;  Duan  J;  Levinson  DF;  Shi  J;  He  D;  Hou  C;  Burrell  GJ;  Rice  JP;  Nertney  DA;  Olincy  A;  Rozic  P;  Vinogradov  S;  Buccola  NG;  Mowry  BJ;  Freedman  R;  Amin  F;  Black  DW;  Silverman  JM;  Byerley  WF;  Crowe  RR;  Cloninger  CR;  Martinez  M;  Gejman  PV:  No significant association of 14 candidate genes with schizophrenia in a large European ancestry sample: implications for psychiatric genetics.  Am J Psychiatry 2008; 165:497—506
[CrossRef] | [PubMed]
 
Shi  J;  Badner  JA;  Gershon  ES;  Liu  C:  Allelic association of G72/G30 with schizophrenia and bipolar disorder: a comprehensive meta-analysis.  Schizophr Res 2008; 98:89—97
[CrossRef] | [PubMed]
 
O'Donovan  MC;  Craddock  N;  Norton  N;  Williams  H;  Peirce  T;  Moskvina  V;  Nikolov  I;  Hamshere  M;  Carroll  L;  Georgieva  L;  Dwyer  S;  Holmans  P;  Marchini  JL;  Spencer  CC;  Howie  B;  Leung  HT;  Hartmann  AM;  Möller  HJ;  Morris  DW;  Shi  Y;  Feng  G;  Hoffmann  P;  Propping  P;  Vasilescu  C;  Maier  W;  Rietschel  M;  Zammit  S;  Schumacher  J;  Quinn  EM;  Schulze  TG;  Williams  NM;  Giegling  I;  Iwata  N;  Ikeda  M;  Darvasi  A;  Shifman  S;  He  L;  Duan  J;  Sanders  AR;  Levinson  DF;  Gejman  PV;  Cichon  S;  Nöthen  MM;  Gill  M;  Corvin  A;  Rujescu  D;  Kirov  G;  Owen  MJ;  Buccola  NG;  Mowry  BJ;  Freedman  R;  Amin  F;  Black  DW;  Silverman  JM;  Byerley  WF;  Cloninger  CR;  Molecular Genetics of Schizophrenia Collaboration: Identifi cation of loci associated with schizophrenia by genome-wide association and follow-up.  Nat Genet 2008; 40:1053—1055
[CrossRef] | [PubMed]
 
Ferreira  MA;  O'Donovan  MC;  Meng  YA;  Jones  IR;  Ruderfer  DM;  Jones  L;  Fan  J;  Kirov  G;  Perlis  RH;  Green  EK;  Smoller  JW;  Grozeva  D;  Stone  J;  Nikolov  I;  Chambert  K;  Hamshere  ML;  Nimgaonkar  VL;  Moskvina  V;  Thase  ME;  Caesar  S;  Sachs  GS;  Franklin  J;  Gordon-Smith  K;  Ardlie  KG;  Gabriel  SB;  Fraser  C;  Blumenstiel  B;  Defelice  M;  Breen  G;  Gill  M;  Morris  DW;  Elkin  A;  Muir  WJ;  Mc-Ghee  KA;  Williamson  R;  MacIntyre  DJ;  Maclean  AW;  St Clair  D;  Robinson  M;  Van Beck  M;  Pereira  AC;  Kandaswamy  R;  McQuillin  A;  Collier  DA;  Bass  NJ;  Young  AH;  Lawrence  J;  Nicol Ferrier  I;  Anjorin  A;  Farmer  A;  Curtis  D;  Scolnick  EM;  McGuffin  P;  Daly  MJ;  Corvin  AP;  Holmans  PA;  Blackwood  DH;  Gurling  HM;  Owen  MJ;  Purcell  SM;  Sklar  P;  Craddock  N:  Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder.  Nat Genet 2008; 40:1056—1058
[CrossRef] | [PubMed]
 
Sullivan  PF;  de Geus  EJ;  Willemsen  G;  James  MR;  Smit  JH;  Zandbelt  T;  Arolt  V;  Baune  BT;  Blackwood  D;  Cichon  S;  Coventry  WL;  Domschke  K;  Farmer  A;  Fava  M;  Gordon  SD;  He  Q;  Heath  AC;  Heutink  P;  Holsboer  F;  Hoogendijk  WJ;  Hottenga  JJ;  Hu  Y;  Kohli  M;  Lin  D;  Lucae  S;  MacIntyre  DJ;  Maier  W;  McGhee  KA;  McGuffin  P;  Montgomery  GW;  Muir  WJ;  Nolen  WA;  Nothen  MM;  Perlis  RH;  Pirlo  K;  Posthuma  D;  Rietschel  M;  Rizzu  P;  Schosser  A;  Smit  AB;  Smoller  JW;  Tzeng  JY;  van Dyck  R;  Verhage  M;  Zitman  FG;  Martin  NG;  Wray  NR;  Boomsma  DI;  Penninx  BW:  Genomewide association for major depressive disorder: a possible role for the presynaptic protein piccolo.  Mol Psychiatry 2009; 14:359—375
[CrossRef] | [PubMed]
 
Moskvina  V;  Craddock  N;  Holmans  P;  Nikolov  I;  Pahwa  JS;  Green  E;  Owen  MJ;  O'Donovan  MC:  Gene-wide analyses of genomewide association data sets: evidence for multiple common risk alleles for schizophrenia and bipolar disorder and for overlap in genetic risk.  Mol Psychiatry 2009; 14:252—260
[CrossRef] | [PubMed]
 
Purcell  SM;  Wray  NR;  Stone  JL;  Visscher  PM;  O'Donovan  MC;  Sullivan  PF;  Sklar  P:  Common polygenic variation contributes to risk of schizophrenia and bipolar disorder.  Nature 2009; 460:748—752
[PubMed]
 
Sachs  GS;  Thase  ME;  Otto  MW;  Bauer  M;  Miklowitz  D;  Wisniewski  SR;  Lavori  P;  Lebowitz  B;  Rudorfer  M;  Frank  E;  Nierenberg  AA;  Fava  M;  Bowden  C;  Ketter  T;  Marangell  L;  Calabrese  J;  Kupfer  D;  Rosenbaum  JF:  Rationale, design, and methods of the Systematic Treatment Enhancement Program for Bipolar Disorder (STEP-BD).  Biol Psychiatry 2003; 53:1028—1042
[CrossRef] | [PubMed]
 
Kogan  JN;  Otto  MW;  Bauer  MS;  Dennehy  EB;  Miklowitz  DJ;  Zhang  HW;  Ketter  T;  Rudorfer  MV;  Wisniewski  SR;  Thase  ME;  Calabrese  J;  Sachs  GS:  Demographic and diagnostic characteristics of the first 1,000 patients enrolled in the Systematic Treatment Enhancement Program for Bipolar Disorder (STEP-BD).  Bipolar Disord 2004; 6:460—469
[CrossRef] | [PubMed]
 
Stroup  TS;  McEvoy  JP;  Swartz  MS;  Byerly  MJ;  Glick  ID;  Canive  JM;  McGee  MF;  Simpson  GM;  Stevens  MC;  Lieberman  JA:  The National Institute of Mental Health Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) project: schizophrenia trial design and protocol development.  Schizophr Bull 2003; 29:15—31
[PubMed]
[CrossRef]
 
Lieberman  JA;  Stroup  TS;  McEvoy  JP;  Swartz  MS;  Rosenheck  RA;  Perkins  DO;  Keefe  RS;  Davis  SM;  Davis  CE;  Lebowitz  BD;  Severe  J;  Hsiao  JK:  Effectiveness of antipsychotic drugs in patients with chronic schizophrenia.  N Engl J Med 2005; 353:1209—1223
[CrossRef] | [PubMed]
 
Spitzer  R;  Williams  J;  Gibbon  M:  Structured Clinical Interview for DSM-IV, Outpatient Version (SCID-OP).  New York,  Biometrics Research Department, New York State Psychiatric Institute, 1996
 
Sullivan  PF;  Lin  D;  Tzeng  JY;  van den Oord  E;  Perkins  D;  Stroup  TS;  Wagner  M;  Lee  S;  Wright  FA;  Zou  F;  Liu  W;  Downing  AM;  Lieberman  J;  Close  SL:  Genomewide association for schizophrenia in the CATIE study: results of stage 1.  Mol Psychiatry 2008; 13:570—584
[CrossRef] | [PubMed]
 
Rush  AJ;  Fava  M;  Wisniewski  SR;  Lavori  PW;  Trivedi  MH;  Sackeim  HA;  Thase  ME;  Nierenberg  AA;  Quitkin  FM;  Kashner  TM;  Kupfer  DJ;  Rosenbaum  JF;  Alpert  J;  Stewart  JW;  McGrath  PJ;  Biggs  MM;  Shores-Wilson  K;  Lebowitz  BD;  Ritz  L;  Niederehe  G:  Sequenced Treatment Alternatives to Relieve Depression (STAR*D): rationale and design.  Control Clin Trials 2004; 25:119—142
[CrossRef] | [PubMed]
 
Sklar  P;  Smoller  JW;  Fan  J;  Ferreira  MA;  Perlis  RH;  Chambert  K;  Nimgaonkar  VL;  McQueen  MB;  Faraone  SV;  Kirby  A;  de Bakker  PI;  Ogdie  MN;  Thase  ME;  Sachs  GS;  Todd-Brown  K;  Gabriel  SB;  Sougnez  C;  Gates  C;  Blumenstiel  B;  Defelice  M;  Ardlie  KG;  Franklin  J;  Muir  WJ;  McGhee  KA;  MacIntyre  DJ;  McLean  A;  Van-Beck  M;  McQuillin  A;  Bass  NJ;  Robinson  M;  Lawrence  J;  Anjorin  A;  Curtis  D;  Scolnick  EM;  Daly  MJ;  Blackwood  DH;  Gurling  HM;  Purcell  SM:  Whole-genome association study of bipolar disorder.  Mol Psychiatry 2008; 13:558—569
[CrossRef] | [PubMed]
 
Saxena  R;  Voight  BF;  Lyssenko  V;  Burtt  NP;  de Bakker  PI;  Chen  H;  Roix  JJ;  Kathiresan  S;  Hirschhorn  JN;  Daly  MJ;  Hughes  TE;  Groop  L;  Altshuler  D;  Almgren  P;  Florez  JC;  Meyer  J;  Ardlie  K;  Bengtsson  Bostrom K;  Isomaa  B;  Lettre  G;  Lindblad  U;  Lyon  HN;  Melander  O;  Newton-Cheh  C;  Nilsson  P;  Orho-Melander  M;  Rastam  L;  Speliotes  EK;  Taskinen  MR;  Tuomi  T;  Guiducci  C;  Berglund  A;  Carlson  J;  Gianniny  L;  Hackett  R;  Hall  L;  Holmkvist  J;  Laurila  E;  Sjogren  M;  Sterner  M;  Surti  A;  Svensson  M;  Tewhey  R;  Blumenstiel  B;  Parkin  M;  Defelice  M;  Barry  R;  Brodeur  W;  Camarata  J;  Chia  N;  Fava  M;  Gibbons  J;  Handsaker  B;  Healy  C;  Nguyen  K;  Gates  C;  Sougnez  C;  Gage  D;  Nizzari  M;  Gabriel  SB;  Chirn  GW;  Ma  Q;  Parikh  H;  Richardson  D;  Ricke  D;  Purcell  S:  Genome-wide association analysis identifi es loci for type 2 diabetes and triglyceride levels.  Science 2007; 316:1331—1336
[CrossRef] | [PubMed]
 
Garriock  HA;  Kraft  JB;  Shyn  SI;  Peters  EJ;  Yokoyama  JS;  Jenkins  GD;  Reinalda  MS;  Slager  SL;  McGrath  PJ;  Hamilton  SP:  A genomewide association study of citalopram response in major depressive disorder.  Biol Psychiatry 2010; 67:133—138
[CrossRef] | [PubMed]
 
Purcell  S;  Neale  B;  Todd-Brown  K;  Thomas  L;  Ferreira  MA;  Bender  D;  Maller  J;  Sklar  P;  de Bakker  PI;  Daly  MJ;  Sham  PC:  PLINK: a tool set for whole-genome association and population-based linkage analyses.  Am J Hum Genet 2007; 81:559—575
[CrossRef] | [PubMed]
 
Kamnasaran  D;  Muir  WJ;  Ferguson-Smith  MA;  Cox  DW:  Disruption of the neuronal PAS3 gene in a family affected with schizophrenia.  J Med Genet 2003; 40:325—332
[CrossRef] | [PubMed]
 
Pickard  BS;  Malloy  MP;  Porteous  DJ;  Blackwood  DH;  Muir  WJ:  Disruption of a brain transcription factor, NPAS3, is associated with schizophrenia and learning disability.  Am J Med Genet B Neuropsychiatr Genet 2005; 136B:26—32
[CrossRef] | [PubMed]
 
Pickard  BS;  Christoforou  A;  Thomson  PA;  Fawkes  A;  Evans  KL;  Morris  SW;  Porteous  DJ;  Blackwood  DH;  Muir  WJ:  Interacting haplotypes at the NPAS3 locus alter risk of schizophrenia and bipolar disorder.  Mol Psychiatry 2009; 14:874—884
[CrossRef] | [PubMed]
 
Gershon  ES;  Hamovit  J;  Guroff  JJ;  Dibble  E;  Leckman  JF;  Sceery  W;  Targum  SD;  Nurnberger  JI  Jr;  Goldin  LR;  Bunney  WE  Jr:  A family study of schizoaffective, bipolar I, bipolar II, unipolar and normal control probands.  Arch Gen Psychiatry 1982; 39:1157—1167
[PubMed]
[CrossRef]
 
Coryell  W;  Endicott  J;  Reich  T;  Andreasen  N;  Keller  M:  A family study of bipolar II disorder.  Br J Psychiatry 1984; 145:49—54
[CrossRef] | [PubMed]
 
Endicott  J;  Nee  J;  Andreasen  N;  Clayton  P;  Keller  M;  Coryell  W:  Bipolar II: Combine or keep separate? J Affect Disord 1985; 8:17—28
[CrossRef] | [PubMed]
 
Andreasen  NC;  Rice  J;  Endicott  J;  Coryell  W;  Grove  WM;  Reich  T:  Familial rates of affective disorder: a report from the National Institute of Mental Health Collaborative Study.  Arch Gen Psychiatry 1987; 44:461—469
[PubMed]
[CrossRef]
 
Heun  R;  Maier  W:  The distinction of bipolar II disorder from bipolar I and recurrent unipolar depression: results of a controlled family study.  Acta Psychiatr Scand 1993; 87:279—284
[CrossRef] | [PubMed]
 
Simpson  SG;  Folstein  SE;  Meyers  DA;  McMahon  FJ;  Brusco  DM;  DePaulo  JR  Jr:  Bipolar II: The most common bipolar phenotype? Am J Psychiatry 1993; 150:901—903
[PubMed]
 
Edvardsen  J;  Torgersen  S;  Roysamb  E;  Lygren  S;  Skre  I;  Onstad  S;  Oien  PA:  Heritability of bipolar spectrum disorders: Unity or heterogeneity? J Affect Disord 2008; 106:229—240
[CrossRef] | [PubMed]
 
Nwulia  EA;  Miao  K;  Zandi  PP;  Mackinnon  DF;  DePaulo  JR  Jr;  McInnis  MG:  Genome-wide scan of bipolar II disorder.  Bipolar Disord 2007; 9:580—588
[CrossRef] | [PubMed]
 
Bettoni  F;  Filho  FC;  Grosso  DM;  Galante  PA;  Parmigiani  RB;  Geraldo  MV;  Henrique-Silva  F;  Oba-Shinjo  SM;  Marie  SK;  Soares  FA;  Brentani  HP;  Simpson  AJ;  de Souza  SJ;  Camargo  AA:  Identifi cation of FAM46D as a novel cancer/testis antigen using EST data and serological analysis.  Genomics 2009; 94:153—160
[CrossRef] | [PubMed]
 
Fernandez  AP;  Serrano  J;  Tessarollo  L;  Cuttitta  F;  Martinez  A:  Lack of adrenomedullin in the mouse brain results in behavioral changes, anxiety, and lower survival under stress conditions.  Proc Natl Acad Sci U S A 2008; 105:12581—12586
[CrossRef] | [PubMed]
 
Savas  HA;  Herken  H;  Yurekli  M;  Uz  E;  Tutkun  H;  Zoroglu  SS;  Ozen  ME;  Cengiz  B;  Akyol  O:  Possible role of nitric oxide and adrenomedullin in bipolar affective disorder.  Neuropsychobiology 2002; 45:57—61
[CrossRef] | [PubMed]
 
Glubb  DM;  McHugh  PC;  Deng  X;  Joyce  PR;  Kennedy  MA:  Association of a functional polymorphism in the adrenomedullin gene (ADM) with response to paroxetine.  Pharmacogenomics J 2010; 10:126—133
[CrossRef] | [PubMed]
 
Brunskill  EW;  Ehrman  LA;  Williams  MT;  Klanke  J;  Hammer  D;  Schaefer  TL;  Sah  R;  Dorn  GW  2nd;  Potter  SS;  Vorhees  CV:  Abnormal neurodevelopment, neurosignaling and behaviour in NPAS3-deficient mice.  Eur J Neurosci 2005; 22:1265—1276
[CrossRef] | [PubMed]
 
Erbel-Sieler  C;  Dudley  C;  Zhou  Y;  Wu  X;  Estill  SJ;  Han  T;  Diaz-Arrastia  R;  Brunskill  EW;  Potter  SS;  McKnight  SL:  Behavioral and regulatory abnormalities in mice deficient in the NPAS1 and NPAS3 transcription factors.  Proc Natl Acad Sci U S A 2004; 101:13648—13653
[CrossRef] | [PubMed]
 
Pieper  AA;  Wu  X;  Han  TW;  Estill  SJ;  Dang  Q;  Wu  LC;  Reece-Fincanon  S;  Dudley  CA;  Richardson  JA;  Brat  DJ;  McKnight  SL:  The neuronal PAS domain protein 3 transcription factor controls FGF-mediated adult hippocampal neurogenesis in mice.  Proc Natl Acad Sci U S A 2005; 102:14052—14057
[CrossRef] | [PubMed]
 
Lettre  G;  Rioux  JD:  Autoimmune diseases: insights from genome-wide association studies.  Hum Mol Genet 2008; 17:R116—R121
[CrossRef] | [PubMed]
 
Smyth  DJ;  Plagnol  V;  Walker  NM;  Cooper  JD;  Downes  K;  Yang  JH;  Howson  JM;  Stevens  H;  McManus  R;  Wijmenga  C;  Heap  GA;  Dubois  PC;  Clayton  DG;  Hunt  KA;  van Heel  DA;  Todd  JA:  Shared and distinct genetic variants in type 1 diabetes and celiac disease.  N Engl J Med 2008; 359:2767—2777
[CrossRef] | [PubMed]
 
Plenge  RM:  Shared genetic risk factors for type 1 diabetes and celiac disease.  N Engl J Med 2008; 359:2837—2838
[CrossRef] | [PubMed]
 
Psychiatric GWAS Consortium Steering Committee:  A framework for interpreting genome-wide association studies of psychiatric disorders.  Mol Psychiatry 2009; 14:10—17
[CrossRef] | [PubMed]
 
References Container
+
+

CME Activity

There is currently no quiz available for this resource. Please click here to go to the CME page to find another.
Submit a Comments
Please read the other comments before you post yours. Contributors must reveal any conflict of interest.
Comments are moderated and will appear on the site at the discertion of APA editorial staff.

* = Required Field
(if multiple authors, separate names by comma)
Example: John Doe



Web of Science® Times Cited: 74

Related Content
Articles
Books
The American Psychiatric Publishing Textbook of Psychopharmacology, 4th Edition > Chapter 3.  >
The American Psychiatric Publishing Textbook of Psychopharmacology, 4th Edition > Chapter 3.  >
The American Psychiatric Publishing Textbook of Geriatric Psychiatry, 4th Edition > Chapter 6.  >
The American Psychiatric Publishing Textbook of Psychopharmacology, 4th Edition > Chapter 3.  >
The American Psychiatric Publishing Textbook of Psychopharmacology, 4th Edition > Chapter 45.  >
Topic Collections
Psychiatric News
APA Guidelines
PubMed Articles