0
Get Alert
Please Wait... Processing your request... Please Wait.
You must sign in to sign-up for alerts.

Please confirm that your email address is correct, so you can successfully receive this alert.

Articles   |    
Lower Expression of Glutamic Acid Decarboxylase 67 in the Prefrontal Cortex in Schizophrenia: Contribution of Altered Regulation by Zif268
Sohei Kimoto, M.D., Ph.D.; H. Holly Bazmi, M.S.; David A. Lewis, M.D.
Am J Psychiatry 2014;171:969-978. doi:10.1176/appi.ajp.2014.14010004
View Author and Article Information

Dr. Lewis has received investigator-initiated research support from Bristol-Myers Squibb and Pfizer and has served as a consultant for Autifony, Bristol-Myers Squibb, Concert Pharmaceuticals, and Sunovion. The other authors report no financial relationships with commercial interests.

Supported by NIH grants MH043784 and MH084053 (Dr. Lewis) and by Nara Medical University (Dr. Kimoto).

From the Department of Psychiatry and the Department of Neuroscience, University of Pittsburgh, Pittsburgh.

Presented in part at the 42nd annual meeting of the Society for Neuroscience, New Orleans, October 13–17, 2012.

Address correspondence to Dr. Lewis (lewisda@upmc.edu).

Copyright © 2014 by the American Psychiatric Association

Received January 02, 2014; Revised March 17, 2014; Accepted April 10, 2014.

Abstract

Objective  Cognitive deficits of schizophrenia may be due at least in part to lower expression of the 67-kDa isoform of glutamic acid decarboxylase (GAD67), a key enzyme for GABA synthesis, in the dorsolateral prefrontal cortex of individuals with schizophrenia. However, little is known about the molecular regulation of lower cortical GAD67 levels in schizophrenia. The GAD67 promoter region contains a conserved Zif268 binding site, and Zif268 activation is accompanied by increased GAD67 expression. Thus, altered expression of the immediate early gene Zif268 may contribute to lower levels of GAD67 mRNA in the dorsolateral prefrontal cortex in schizophrenia.

Method  The authors used polymerase chain reaction to quantify GAD67 and Zif268 mRNA levels in dorsolateral prefrontal cortex area 9 from 62 matched pairs of schizophrenia and healthy comparison subjects, and in situ hybridization to assess Zif268 expression at laminar and cellular levels of resolution. The effects of potentially confounding variables were assessed in human subjects, and the effects of antipsychotic treatments were tested in antipsychotic-exposed monkeys. The specificity of the Zif268 findings was assessed by quantifying mRNA levels for other immediate early genes.

Results  GAD67 and Zif268 mRNA levels were significantly lower and were positively correlated in the schizophrenia subjects. Both Zif268 mRNA-positive neuron density and Zif268 mRNA levels per neuron were significantly lower in the schizophrenia subjects. These findings were robust to the effects of the confounding variables examined and differed from other immediate early genes.

Conclusions  Deficient Zif268 mRNA expression may contribute to lower cortical GAD67 levels in schizophrenia, suggesting a potential mechanistic basis for altered cortical GABA synthesis and impaired cognition in schizophrenia.

Abstract Teaser
Figures in this Article

Your Session has timed out. Please sign back in to continue.
Sign In Your Session has timed out. Please sign back in to continue.
Sign In to Access Full Content
 
Username
Password
Sign in via Athens (What is this?)
Athens is a service for single sign-on which enables access to all of an institution's subscriptions on- or off-site.
Not a subscriber?

Subscribe Now/Learn More

PsychiatryOnline subscription options offer access to the DSM-5 library, books, journals, CME, and patient resources. This all-in-one virtual library provides psychiatrists and mental health professionals with key resources for diagnosis, treatment, research, and professional development.

Need more help? PsychiatryOnline Customer Service may be reached by emailing PsychiatryOnline@psych.org or by calling 800-368-5777 (in the U.S.) or 703-907-7322 (outside the U.S.).

FIGURE 1. qPCR Determination for Zif268 mRNA in Schizophrenia and Comparison Subjects and Effect of Potential Confounding Variables on Zif268 mRNA Expression Levelsa

a qPCR=quantitative polymerase chain reaction. In panel A, the scatterplots indicate Zif268 mRNA level for each comparison and schizophrenia subject in a pair. Data points below the diagonal unity line indicate lower levels for Zif268 mRNA in the schizophrenia subject relative to the comparison subject. Mean Zif268 mRNA level was significantly lower in the schizophrenia subjects relative to the comparison subjects (mean=0.041 [SD=0.023] and mean=0.059 [SD=0.020], respectively; −32%; F=21.5, df=1, 53, p<0.001). In panel B, Zif268 mRNA levels in dorsolateral prefrontal cortex were significantly negatively correlated with age in both subject groups (schizophrenia subjects: N=58; r=−0.38, p=0.003; comparison subjects: N=61; r=−0.39, p=0.002). In panel C, in which schizophrenia subjects are grouped by potential confounding factors, the circles represent Zif268 mRNA expression levels for individual subjects and the bars represent mean Zif268 mRNA levels for the indicated group. Schizophrenia subjects taking benzodiazepines or sodium valproate at the time of death had lower Zif268 mRNA levels relative to those not taking these medications (F=7.64, df=1, 50, p=0.008).

b Information on nicotine use was not available for all subjects.

c Cause of death was undetermined for one schizophrenia subject.

FIGURE 2. In Situ Hybridization Film Analysis and Cellular Grain Counting Analysis for Zif268 mRNA in Schizophrenia Subjects Relative to Matched Comparison Subjectsa

a Panel A presents representative pseudocolored film autoradiographs of dorsolateral prefrontal cortex sections illustrating Zif268 mRNA expression levels in a schizophrenia and matched comparison subject pair. The solid and dotted lines indicate the pial surface and the gray/white matter border, respectively. In panel B, the scatterplot indicates average Zif268 mRNA levels across the gray matter for each comparison and schizophrenia subject pair. Data points below the diagonal unity line indicate lower Zif268 mRNA levels in the schizophrenia subject relative to the matched comparison subject. Mean Zif268 mRNA levels were significantly lower in schizophrenia subjects relative to comparison subjects (mean=38.0 [SD=22.1] and mean=57.6 [SD=15.4], respectively; −34.0%; F=15.4, df=1, 34, p<0.001). Panels C and D show laminar expression of mean Zif268 mRNA levels across all cortical layers (panel C) and in each cortical layer (panel D) in schizophrenia and comparison subjects (error bars indicate standard deviation). Laminar analysis revealed that mean Zif268 mRNA levels were lower by 36.8% in layer 2, 37.7% in layer 3, 40.6% in layer 4, 42.8% in layer 5, and 38.7% in layer 6 in schizophrenia subjects relative to comparison subjects. Panels E and F present scatterplots of Zif268-positive neurons per mm2 and grains per positive neuron, respectively, in layers deep 3–4 for each comparison and schizophrenia subject pair. Data points below the diagonal unity lines indicate lower Zif268 mRNA levels in the schizophrenia subject relative to the comparison subject. Cellular analysis revealed that the mean number of Zif268-positive neurons/mm2 was lower in layers deep 3–4 in schizophrenia subjects relative to comparison subjects (mean=53.8 [SD=18.3] and mean=112.7 [ SD=24.4], respectively; −52.3%; F=266.3, df=1, 15, p<0.001). The mean grain density per Zif268-positive neuron was also lower in layers deep 3–4 in schizophrenia subjects relative to comparison subjects (mean=43.8 [SD=10.8] and mean=68.1 [SD=10.5], respectively; −35.6%; F=71.4, df=1, 15, p<0.001).

*p<0.001.

FIGURE 3. qPCR Determination for GAD67 mRNA Levels and Correlation With Zif268 mRNA Levels in Schizophrenia Subjects and Matched Comparison Subjectsa

a qPCR=quantitative polymerase chain reaction. In panel A, the scatterplot indicates GAD67 mRNA level for each schizophrenia and matched comparison subject pair. Data points below the diagonal unity line indicate lower levels for GAD67 mRNA in the schizophrenia subject relative to the matched comparison subject. Mean mRNA levels for GAD67 were significantly lower in schizophrenia subjects relative to comparison subjects (mean=0.044 [SD=0.011] and mean=0.052 [SD=0.008], respectively; −14.3%; F=12.6, df=1, 57, p=0.001). In panel B, Zif268 mRNA levels were positively correlated with GAD67 mRNA levels in schizophrenia subjects (N=58; r=0.29, p=0.027), but not in comparison subjects (N=61; r=−0.15, p=0.25).

FIGURE 4. qPCR Analyses of Other Immediate Early Genes in Schizophrenia Subjects and Matched Comparison Subjectsa

a qPCR=quantitative polymerase chain reaction. Scatterplots indicate mRNA levels of immediate early genes for each schizophrenia and matched comparison subject pair. Data points below the diagonal unity lines indicate lower mRNA levels in the schizophrenia subject relative to the comparison subject and vice versa. Mean mRNA level for c-fos did not differ between schizophrenia (mean=0.018, SD=0.026) and comparison subjects (mean=0.017, SD=0.012). In contrast, mean mRNA levels for c-jun were statistically higher in schizophrenia subjects relative to comparison subjects (mean=0.031 [SD=0.018] and mean=0.023 [SD=0.007], respectively; +34.2%; F=10.9, df=1, 56, p=0.002), while mean mRNA level for EGR-2 was lower, but fell short of significance, in schizophrenia subjects relative to comparison subjects (mean=0.0042 [SD=0.0038] and mean=0.0056 [SD=0.0024], respectively; −23.8%; F=3.49, df=1, 55, p=0.067).

Anchor for Jump
TABLE 1.Summary of Demographic and Postmortem Characteristics of Human Subjects in the Studya
Table Footer Note

a Brain pH was significantly different between groups (p=0.01). There were no other significant differences between groups.

+

References

Lewis  DA;  Hashimoto  T;  Volk  DW:  Cortical inhibitory neurons and schizophrenia.  Nat Rev Neurosci 2005; 6:312–324
[CrossRef] | [PubMed]
 
Akbarian  S;  Kim  JJ;  Potkin  SG;  Hagman  JO;  Tafazzoli  A;  Bunney  WE  Jr;  Jones  EG:  Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics.  Arch Gen Psychiatry 1995; 52:258–266
[CrossRef] | [PubMed]
 
Duncan  CE;  Webster  MJ;  Rothmond  DA;  Bahn  S;  Elashoff  M;  Weickert  CS:  Prefrontal GABA(A) receptor alpha-subunit expression in normal postnatal human development and schizophrenia.  J Psychiatr Res 2010; 44:673–681
[CrossRef] | [PubMed]
 
Hashimoto  T;  Bergen  SE;  Nguyen  QL;  Xu  B;  Monteggia  LM;  Pierri  JN;  Sun  Z;  Sampson  AR;  Lewis  DA:  Relationship of brain-derived neurotrophic factor and its receptor TrkB to altered inhibitory prefrontal circuitry in schizophrenia.  J Neurosci 2005; 25:372–383
[CrossRef] | [PubMed]
 
Thompson  M;  Weickert  CS;  Wyatt  E;  Webster  MJ:  Decreased glutamic acid decarboxylase(67) mRNA expression in multiple brain areas of patients with schizophrenia and mood disorders.  J Psychiatr Res 2009; 43:970–977
[CrossRef] | [PubMed]
 
Vawter  MP;  Crook  JM;  Hyde  TM;  Kleinman  JE;  Weinberger  DR;  Becker  KG;  Freed  WJ:  Microarray analysis of gene expression in the prefrontal cortex in schizophrenia: a preliminary study.  Schizophr Res 2002; 58:11–20
[CrossRef] | [PubMed]
 
Volk  DW;  Austin  MC;  Pierri  JN;  Sampson  AR;  Lewis  DA:  Decreased glutamic acid decarboxylase67 messenger RNA expression in a subset of prefrontal cortical gamma-aminobutyric acid neurons in subjects with schizophrenia.  Arch Gen Psychiatry 2000; 57:237–245
[CrossRef] | [PubMed]
 
Woo  TU;  Kim  AM;  Viscidi  E:  Disease-specific alterations in glutamatergic neurotransmission on inhibitory interneurons in the prefrontal cortex in schizophrenia.  Brain Res 2008; 1218:267–277
[CrossRef] | [PubMed]
 
Curley  AA;  Arion  D;  Volk  DW;  Asafu-Adjei  JK;  Sampson  AR;  Fish  KN;  Lewis  DA:  Cortical deficits of glutamic acid decarboxylase 67 expression in schizophrenia: clinical, protein, and cell type-specific features.  Am J Psychiatry 2011; 168:921–929
[CrossRef] | [PubMed]
 
Guidotti  A;  Auta  J;  Davis  JM;  Di-Giorgi-Gerevini  V;  Dwivedi  Y;  Grayson  DR;  Impagnatiello  F;  Pandey  G;  Pesold  C;  Sharma  R;  Uzunov  D;  Costa  E:  Decrease in reelin and glutamic acid decarboxylase67 (GAD67) expression in schizophrenia and bipolar disorder: a postmortem brain study.  Arch Gen Psychiatry 2000; 57:1061–1069
[CrossRef] | [PubMed]
 
Hoftman  GD;  Volk  DW;  Bazmi  HH;  Li  S;  Sampson  AR;  Lewis  DA:  Altered cortical expression of GABA-related genes in schizophrenia: illness progression vs developmental disturbance.  Schizophr Bull  (Epub ahead of print, Dec 22, 2013)
 
Benson  DL;  Huntsman  MM;  Jones  EG:  Activity-dependent changes in GAD and preprotachykinin mRNAs in visual cortex of adult monkeys.  Cereb Cortex 1994; 4:40–51
[CrossRef] | [PubMed]
 
Lau  CG;  Murthy  VN:  Activity-dependent regulation of inhibition via GAD67.  J Neurosci 2012; 32:8521–8531
[CrossRef] | [PubMed]
 
Lewis  DA;  Curley  AA;  Glausier  JR;  Volk  DW:  Cortical parvalbumin interneurons and cognitive dysfunction in schizophrenia.  Trends Neurosci 2012; 35:57–67
[CrossRef] | [PubMed]
 
Szabó  G;  Katarova  Z;  Körtvély  E;  Greenspan  RJ;  Urbán  Z:  Structure and the promoter region of the mouse gene encoding the 67-kD form of glutamic acid decarboxylase.  DNA Cell Biol 1996; 15:1081–1091
[CrossRef] | [PubMed]
 
Yanagawa  Y;  Kobayashi  T;  Kamei  T;  Ishii  K;  Nishijima  M;  Takaku  A;  Tamura  S:  Structure and alternative promoters of the mouse glutamic acid decarboxylase 67 gene.  Biochem J 1997; 326:573–578
[PubMed]
 
Luo  Y;  Lathia  J;  Mughal  M;  Mattson  MP:  SDF1alpha/CXCR4 signaling, via ERKs and the transcription factor Egr1, induces expression of a 67-kDa form of glutamic acid decarboxylase in embryonic hippocampal neurons.  J Biol Chem 2008; 283:24789–24800
[CrossRef] | [PubMed]
 
Chaudhuri  A;  Cynader  MS:  Activity-dependent expression of the transcription factor Zif268 reveals ocular dominance columns in monkey visual cortex.  Brain Res 1993; 605:349–353
[CrossRef] | [PubMed]
 
Kaplan  IV;  Guo  Y;  Mower  GD:  Immediate early gene expression in cat visual cortex during and after the critical period: differences between EGR-1 and Fos proteins.  Brain Res Mol Brain Res 1996; 36:12–22
[CrossRef] | [PubMed]
 
Okuno  H;  Kanou  S;  Tokuyama  W;  Li  YX;  Miyashita  Y:  Layer-specific differential regulation of transcription factors Zif268 and Jun-D in visual cortex V1 and V2 of macaque monkeys.  Neuroscience 1997; 81:653–666
[CrossRef] | [PubMed]
 
Schlingensiepen  KH;  Lüno  K;  Brysch  W:  High basal expression of the zif/268 immediate early gene in cortical layers IV and VI, in CA1 and in the corpus striatum: an in situ hybridization study.  Neurosci Lett 1991; 122:67–70
[CrossRef] | [PubMed]
 
Worley  PF;  Christy  BA;  Nakabeppu  Y;  Bhat  RV;  Cole  AJ;  Baraban  JM:  Constitutive expression of zif268 in neocortex is regulated by synaptic activity.  Proc Natl Acad Sci USA 1991; 88:5106–5110
[CrossRef] | [PubMed]
 
Zhang  F;  Halleux  P;  Arckens  L;  Vanduffel  W;  Van Brée  L;  Mailleux  P;  Vandesande  F;  Orban  GA;  Vanderhaeghen  JJ:  Distribution of immediate early gene zif-268, c-fos, c-jun, and jun-D mRNAs in the adult cat with special references to brain region related to vision.  Neurosci Lett 1994; 176:137–141
[CrossRef] | [PubMed]
 
Pérez-Santiago  J;  Diez-Alarcia  R;  Callado  LF;  Zhang  JX;  Chana  G;  White  CH;  Glatt  SJ;  Tsuang  MT;  Everall  IP;  Meana  JJ;  Woelk  CH:  A combined analysis of microarray gene expression studies of the human prefrontal cortex identifies genes implicated in schizophrenia.  J Psychiatr Res 2012; 46:1464–1474
[CrossRef] | [PubMed]
 
Yamada  K;  Gerber  DJ;  Iwayama  Y;  Ohnishi  T;  Ohba  H;  Toyota  T;  Aruga  J;  Minabe  Y;  Tonegawa  S;  Yoshikawa  T:  Genetic analysis of the calcineurin pathway identifies members of the EGR gene family, specifically EGR3, as potential susceptibility candidates in schizophrenia.  Proc Natl Acad Sci USA 2007; 104:2815–2820
[CrossRef] | [PubMed]
 
Hughes  P;  Dragunow  M:  Induction of immediate-early genes and the control of neurotransmitter-regulated gene expression within the nervous system.  Pharmacol Rev 1995; 47:133–178
[PubMed]
 
Volk  DW;  Matsubara  T;  Li  S;  Sengupta  EJ;  Georgiev  D;  Minabe  Y;  Sampson  A;  Hashimoto  T;  Lewis  DA:  Deficits in transcriptional regulators of cortical parvalbumin neurons in schizophrenia.  Am J Psychiatry 2012; 169:1082–1091
[CrossRef] | [PubMed]
 
Hashimoto  T;  Bazmi  HH;  Mirnics  K;  Wu  Q;  Sampson  AR;  Lewis  DA:  Conserved regional patterns of GABA-related transcript expression in the neocortex of subjects with schizophrenia.  Am J Psychiatry 2008; 165:479–489
[CrossRef] | [PubMed]
 
Georgiev  D;  Arion  D;  Enwright  JF;  Kikuchi  M;  Minabe  Y;  Corradi  JP;  Lewis  DA;  Hashimoto  T:  Lower gene expression for KCNS3 potassium channel subunit in parvalbumin-containing neurons in the prefrontal cortex in schizophrenia.  Am J Psychiatry 2014; 171:62–71
[CrossRef] | [PubMed]
 
Hashimoto  T;  Volk  DW;  Eggan  SM;  Mirnics  K;  Pierri  JN;  Sun  Z;  Sampson  AR;  Lewis  DA:  Gene expression deficits in a subclass of GABA neurons in the prefrontal cortex of subjects with schizophrenia.  J Neurosci 2003; 23:6315–6326
[PubMed]
 
Dorph-Petersen  KA;  Pierri  JN;  Perel  JM;  Sun  Z;  Sampson  AR;  Lewis  DA:  The influence of chronic exposure to antipsychotic medications on brain size before and after tissue fixation: a comparison of haloperidol and olanzapine in macaque monkeys.  Neuropsychopharmacology 2005; 30:1649–1661
[CrossRef] | [PubMed]
 
Straub  RE;  Lipska  BK;  Egan  MF;  Goldberg  TE;  Callicott  JH;  Mayhew  MB;  Vakkalanka  RK;  Kolachana  BS;  Kleinman  JE;  Weinberger  DR:  Allelic variation in GAD1 (GAD67) is associated with schizophrenia and influences cortical function and gene expression.  Mol Psychiatry 2007; 12:854–869
[CrossRef] | [PubMed]
 
Huang  HS;  Matevossian  A;  Whittle  C;  Kim  SY;  Schumacher  A;  Baker  SP;  Akbarian  S:  Prefrontal dysfunction in schizophrenia involves mixed-lineage leukemia 1-regulated histone methylation at GABAergic gene promoters.  J Neurosci 2007; 27:11254–11262
[CrossRef] | [PubMed]
 
Mauney  SA;  Athanas  KM;  Pantazopoulos  H;  Shaskan  N;  Passeri  E;  Berretta  S;  Woo  TU:  Developmental pattern of perineuronal nets in the human prefrontal cortex and their deficit in schizophrenia.  Biol Psychiatry 2013; 74:427–435
[CrossRef] | [PubMed]
 
Pantazopoulos  H;  Woo  TU;  Lim  MP;  Lange  N;  Berretta  S:  Extracellular matrix-glial abnormalities in the amygdala and entorhinal cortex of subjects diagnosed with schizophrenia.  Arch Gen Psychiatry 2010; 67:155–166
[CrossRef] | [PubMed]
 
Davis  S;  Bozon  B;  Laroche  S:  How necessary is the activation of the immediate early gene zif268 in synaptic plasticity and learning? Behav Brain Res 2003; 142:17–30
[CrossRef] | [PubMed]
 
Rygh  LJ;  Suzuki  R;  Rahman  W;  Wong  Y;  Vonsy  JL;  Sandhu  H;  Webber  M;  Hunt  S;  Dickenson  AH:  Local and descending circuits regulate long-term potentiation and zif268 expression in spinal neurons.  Eur J Neurosci 2006; 24:761–772
[CrossRef] | [PubMed]
 
Ewing  SG;  Porr  B;  Pratt  JA:  Deep brain stimulation of the mediodorsal thalamic nucleus yields increases in the expression of zif-268 but not c-fos in the frontal cortex.  J Chem Neuroanat 2013; 52:20–24
[CrossRef] | [PubMed]
 
Garey  LJ;  Ong  WY;  Patel  TS;  Kanani  M;  Davis  A;  Mortimer  AM;  Barnes  TR;  Hirsch  SR:  Reduced dendritic spine density on cerebral cortical pyramidal neurons in schizophrenia.  J Neurol Neurosurg Psychiatry 1998; 65:446–453
[CrossRef] | [PubMed]
 
Glantz  LA;  Lewis  DA:  Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia.  Arch Gen Psychiatry 2000; 57:65–73
[CrossRef] | [PubMed]
 
Glausier  JR;  Lewis  DA:  Dendritic spine pathology in schizophrenia.  Neuroscience 2013; 251:90–107
[CrossRef] | [PubMed]
 
Pucak  ML;  Levitt  JB;  Lund  JS;  Lewis  DA:  Patterns of intrinsic and associational circuitry in monkey prefrontal cortex.  J Comp Neurol 1996; 376:614–630
[CrossRef] | [PubMed]
 
References Container
+
+

CME Activity

There is currently no quiz available for this resource. Please click here to go to the CME page to find another.
Submit a Comments
Please read the other comments before you post yours. Contributors must reveal any conflict of interest.
Comments are moderated and will appear on the site at the discertion of APA editorial staff.

* = Required Field
(if multiple authors, separate names by comma)
Example: John Doe



Web of Science® Times Cited: 1

Related Content
See Also...
Articles
Books
The American Psychiatric Publishing Textbook of Psychopharmacology, 4th Edition > Chapter 1.  >
The American Psychiatric Publishing Textbook of Psychopharmacology, 4th Edition > Chapter 4.  >
The American Psychiatric Publishing Textbook of Psychopharmacology, 4th Edition > Chapter 46.  >
The American Psychiatric Publishing Textbook of Psychopharmacology, 4th Edition > Chapter 4.  >
The American Psychiatric Publishing Textbook of Psychopharmacology, 4th Edition > Chapter 4.  >
Topic Collections
Psychiatric News
Read more at Psychiatric News >>
APA Guidelines
PubMed Articles